On the Gakhov equation in the Janowski classes with additional parameter
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 1, pp. 35-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Janowski class is characterized by a suitable disk in the right half-plane containing values of the functional $\zeta f'/f$ for all functions of this class. The set of such classes-disks forms a two-dimensional family “filling” $\Delta$ triangle. In our previous works, the maximum domain $\Delta'\subset\Delta$ of the parameters ensuring the uniqueness property of the (zero) root of the Gakhov equation for each function of the corresponding class was determined. In the present paper, such a domain is found for the families of the Janowski classes over $\Delta\times[0,1]$.
Keywords: Gakhov equation, Gakhov set, Janowski classes, hyperbolic derivative, conformal (inner mapping) radius.
@article{UZKU_2015_157_1_a3,
     author = {A. V. Kazantsev},
     title = {On the {Gakhov} equation in the {Janowski} classes with additional parameter},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {35--43},
     year = {2015},
     volume = {157},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a3/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - On the Gakhov equation in the Janowski classes with additional parameter
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2015
SP  - 35
EP  - 43
VL  - 157
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a3/
LA  - ru
ID  - UZKU_2015_157_1_a3
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T On the Gakhov equation in the Janowski classes with additional parameter
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2015
%P 35-43
%V 157
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a3/
%G ru
%F UZKU_2015_157_1_a3
A. V. Kazantsev. On the Gakhov equation in the Janowski classes with additional parameter. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 1, pp. 35-43. http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a3/

[1] Peschl E., “Über die Werwendung von Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Tipus”, Ann. Acad. Sci. Fenn. Ser. AI Math., 336:6 (1963), 1–22 | MR

[2] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180 (1982), 91–106 | DOI | MR

[3] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matem., 1984, no. 2, 3–11 | MR | Zbl

[4] Polia G., Segë G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978, 432 pp.

[5] Gakhov F. D., “Ob obratnykh kraevykh zadachakh”, Dokl. AN SSSR, 86:4 (1952), 649–652 | Zbl

[6] Aksentev L. A., Kazantsev A. V., Kiselev A. V., “O edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Izv. vuzov. Matem., 1984, no. 10, 8–18 | MR | Zbl

[7] Aksentev L. A., Kazantsev A. V., “Novoe svoistvo klassa Nekhari i ego primenenie”, Trudy seminara po kraevym zadacham, 25, Kazan. gos. un-t, Kazan, 1990, 33–51 | MR | Zbl

[8] Aksentev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “O klassakh edinstvennosti vneshnei obratnoi kraevoi zadachi”, Trudy seminara po kraevym zadacham, 24, Kazan. gos. un-t, Kazan, 1990, 39–62 | MR

[9] Kazantsev A. V., “On a problem of Polya and Szegö”, Lobachevskii J. Math., 9 (2001), 37–46 | MR | Zbl

[10] Aksentev L. A., Khokhlov Yu. E., Shirokova E. A., “O edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Matem. zametki, 24:3 (1978), 319–330 | MR | Zbl

[11] Aksentev L. A., Kazantsev A. V., Popov N. I., “O teoremakh edinstvennosti dlya vneshnei obratnoi kraevoi zadachi v podklassakh odnolistnykh funktsii”, Izv. vuzov. Matem., 1998, no. 8, 3–13 | MR | Zbl

[12] Zharkova T. V., Kazantsev A. V., “O metode podchinennosti v probleme edinstvennosti kornya uravneniya Gakhova”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 46, Kazan. matem. o-vo, Kazan, 2013, 189–190 | MR

[13] Kinder M. I., “Issledovanie uravneniya F. D. Gakhova v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 22, Kazan. gos. un-t, Kazan, 1985, 104–116 | MR | Zbl

[14] Kazantsev A. V., Chetyre etyuda na temu F. D. Gakhova, Ucheb. posobie, Mar. gos. un-t, Ioshkar-Ola, 2012, 64 pp.

[15] Kazantsev A. V., “Mnozhestvo Gakhova v prostranstve Khornicha pri blokhovskikh ogranicheniyakh na predshvartsiany”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, 2013, 65–82

[16] Kazantsev A. V., “O vykhode iz mnozhestva Gakhova, kontroliruemom usloviyami podchinennosti”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156, no. 1, 2014, 31–43

[17] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR

[18] Haegi H. R., “Extremalprobleme und Ungleichungen konformer Gebietsgrössen”, Compositio Math., 8:2 (1950), 81–111 | MR | Zbl

[19] Kazantsev A. V., “Bifurkatsii i novye usloviya edinstvennosti kriticheskikh tochek giperbolicheskikh proizvodnykh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 180–194 | MR | Zbl

[20] Kazantsev A. V., “Bifurkatsii kornei uravneniya Gakhova s levnerovskoi levoi chastyu”, Izv. vuzov. Matem., 1993, no. 6, 69–73 | MR | Zbl

[21] Kazantsev A. V., “Parametric families of inner mapping radii”, 2nd European Congr. Math. (Budapest, July 22–26, 1996), Abstracts, János Bolyai Math. Soc., Budapest, 1996, 30

[22] Kazantsev A. V., Popov N. I., “O nekotorykh zadachakh, svyazannykh s funktsionalami izoperimetricheskogo tipa”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 14, Kazan. matem. o-vo, Kazan, 2002, 144–157 | MR | Zbl

[23] Lehto O., “Univalent functions, Schwarzian derivatives and quasiconformal mappings”, Monogr. Ensegn. Math. (2), 1978, no. 24, 203–214 | MR | Zbl

[24] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazan. fond “Matematika”, Kazan, 1996, 216 pp. | MR

[25] Rid M., Saimon R., Metody sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1977, 359 pp.

[26] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962, 896 pp.

[27] Stoilov S., Teoriya funktsii kompleksnogo peremennogo, v. 1, Izd-vo inostr. lit., M., 1962, 364 pp.