@article{UZKU_2015_157_1_a1,
author = {I. B. Badriev and G. Z. Garipova and M. V. Makarov and V. N. Paimushin and R. F. Chabibullin},
title = {On solving physically nonlinear equilibrium problems for sandwich plates with a~transversely soft filler},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {15--24},
year = {2015},
volume = {157},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a1/}
}
TY - JOUR AU - I. B. Badriev AU - G. Z. Garipova AU - M. V. Makarov AU - V. N. Paimushin AU - R. F. Chabibullin TI - On solving physically nonlinear equilibrium problems for sandwich plates with a transversely soft filler JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2015 SP - 15 EP - 24 VL - 157 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a1/ LA - ru ID - UZKU_2015_157_1_a1 ER -
%0 Journal Article %A I. B. Badriev %A G. Z. Garipova %A M. V. Makarov %A V. N. Paimushin %A R. F. Chabibullin %T On solving physically nonlinear equilibrium problems for sandwich plates with a transversely soft filler %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2015 %P 15-24 %V 157 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a1/ %G ru %F UZKU_2015_157_1_a1
I. B. Badriev; G. Z. Garipova; M. V. Makarov; V. N. Paimushin; R. F. Chabibullin. On solving physically nonlinear equilibrium problems for sandwich plates with a transversely soft filler. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 157 (2015) no. 1, pp. 15-24. http://geodesic.mathdoc.fr/item/UZKU_2015_157_1_a1/
[1] Ugrimov S. V., “Raschet trekhsloinykh plastin s kompozitnymi obshivkami”, Voprosy proektirovaniya i proizvodstva konstruktsii letatelnykh apparatov, Sb. nauch. tr. Nats. aerokosm. un-ta im. N. E. Zhukovskogo “Kharkovskii aviatsionnyi institut”, 3(79), Kharkov, 2014, 47–56
[2] Badriev I. B., Makarov M. V., Paimushin V. N., “On the interaction of composite plate having a vibration-absorbing covering with incident acoustic wave”, Russ. Math., 59:3 (2015), 66–71 | DOI
[3] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976, 402 pp. | MR | Zbl
[4] Karchevskii M. M., Paimushin V. N., “O variatsionnykh zadachakh teorii trekhsloinykh pologikh obolochek”, Differents. uravneniya, 30:7 (1994), 1217–1221 | MR
[5] Badriev I. B., Zheltukhin V. S., Makarov M. V., Paimushin V. N., “Chislennoe reshenie zadachi o ravnovesii trekhsloinoi plastiny s transversalno-myagkim zapolnitelem v geometricheski nelineinoi postanovke”, Vestn. Kazan. tekhnol. un-ta, 17:23 (2014), 393–396
[6] Badriev I. B., Banderov V. V., “Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells”, Lobachevskii J. Math., 35:4 (2014), 354–365 | DOI | MR
[7] Badriev I. B., Banderov V. V., “Numerical method for solving variation problems in mathematical physics”, Appl. Mech. Mater., 668–669 (2014), 1094–1097 | DOI
[8] Badriev I. B., Banderov V. V., Zadvornov O. A., “On the solving of equilibrium problem for the soft network shell with a load concentrated at the point”, PNRPU Mechanics Bulletin, 2013, no. 3, 17–35
[9] Badriev I. B., Shagidullin R. R., “A study of the convergence of a recursive process for solving a stationary problem of the theory of soft shells”, J. Math. Sci., 73:5 (1995), 519–525 | DOI | MR
[10] Paimushin V. N., “Nonlinear theory of the central bending of three-layer shells with defects in the form of sections of bonding failure”, Soviet Appl. Mechanics, 23:11 (1987), 1038–1043 | DOI
[11] Paimushin V. N., Bobrov S. N., “Refined geometric nonlinear theory of sandwich shells with a transversely soft core of medium thickness for investigation of mixed buckling forms”, Mech. Composite Mater., 36:1 (2000), 59–66 | DOI
[12] Paimushin V. N., “K variatsionnym metodam resheniya nelineinykh prostranstvennykh zadach sopryazheniya deformiruemykh tel”, Dokl. AN SSSR, 273:5 (1983), 1083–1086 | MR
[13] Paimushin V. N., “Obobschennyi variatsionnyi printsip Reissnera v nelineinoi mekhanike prostranstvennykh sostavnykh tel s prilozheniyami k teorii mnogosloinykh obolochek”, Izv. AN SSSR. Mekhanika tverdogo tela, 1987, no. 2, 171–180
[14] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974, 480 pp. | MR
[15] Badriev I. B., Zadvornov O. A., Iteratsionnye metody resheniya variatsionnykh neravenstv v gilbertovykh prostranstvakh, Kazan. gos. un-t, Kazan, 2007, 152 pp.
[16] Badriev I. B., Karchevskii M. M., “Convergence of the iterative Uzawa method for the solution of the stationary problem of seepage theory with a limit gradient”, J. Sov. Math., 45:4 (1989), 1302–1309 | DOI | MR
[17] Opial Z., “Weak convergence of the sequence of successive approximations for nonexpansive mappings”, Bull. Am. Math. Soc., 73:4 (1967), 591–597 | DOI | MR | Zbl