Numerical research of oil extraction control problem for a mathematical model of two-phase three-component filtration
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 87-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A formulation of the optimal oil extraction control problem according to the technological criterion of solution quality is suggested. The process of oil extraction in a laminated layer is described by an averaged model of two-phase three-component filtration using the Buckley–Leverett scheme. Reservoir characteristics can change along coordinate axes. The comparison between the basic technological parameters of oil production, obtained with and without regard to optimal regulation for three variants of absolute permeability distribution in a waterflooding element is made. For all the variants, the best technological parameters of oil extraction are obtained using optimal control.
Keywords: numerical research, mathematical model, two-phase three-component filtration, optimal control.
@article{UZKU_2014_156_4_a7,
     author = {V. D. Slabnov},
     title = {Numerical research of oil extraction control problem for a~mathematical model of two-phase three-component filtration},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {87--102},
     year = {2014},
     volume = {156},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a7/}
}
TY  - JOUR
AU  - V. D. Slabnov
TI  - Numerical research of oil extraction control problem for a mathematical model of two-phase three-component filtration
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 87
EP  - 102
VL  - 156
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a7/
LA  - ru
ID  - UZKU_2014_156_4_a7
ER  - 
%0 Journal Article
%A V. D. Slabnov
%T Numerical research of oil extraction control problem for a mathematical model of two-phase three-component filtration
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 87-102
%V 156
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a7/
%G ru
%F UZKU_2014_156_4_a7
V. D. Slabnov. Numerical research of oil extraction control problem for a mathematical model of two-phase three-component filtration. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 87-102. http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a7/

[1] Surguchev M. L., Vtorichnye i tretichnye metody uvelicheniya nefteotdachi plastov, Nedra, M., 1985, 308 pp.

[2] Babalyan G. A., Levi B. I., Dzyuba V. I., Ponomarev S. A., Razrabotka neftyanykh mestorozhdenii s primeneniem poverkhnostno-aktivnykh veschestv, Nedra, M., 1983, 216 pp.

[3] Meerov M. V., Issledovanie i optimizatsiya mnogosvyaznykh sistem upravleniya, Nauka, M., 1986, 236 pp. | MR

[4] Zakirov I. S., Aanonsen S. I., Zakirov E. S., Palatnik B. M., “Optimization Reservoir Performance by Automatic Allocation of Well Rates”, Proc. “ECMOR V: European Conference on Mathematics of Oil Recovery”, Leoben, 1996, 375–384

[5] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980, 396 pp. | MR

[6] Levi B. I., “Trekhmernoe modelirovanie zavodneniya plastov rastvorami khimreagentov”, Problemy nefti i gaza Tyumeni, 1980, no. 48, 39–42

[7] Mukhametzyanov F. M., Sultanov R. A., Fatykhov A. G., “K zadache opredeleniya maksimalnogo summarnogo otbora nefti pri zakachke vodnogo rastvora PAV”, Zadachi podzemnoi gidromekhaniki i ratsionalnoi razrabotki neftyanykh mestorozhdenii, Kazan, 1981, 90–97

[8] Fathi Z., Ramirez W. F., “Optimal Injection Policies for Enhanced Oil Recovery: Part 2 – Surfactant Flooding”, Soc. Petrol. Eng. J., 24:3 (1984), 333–341 | DOI

[9] Ramirez W. F., Application of Optimal Control Theory to Enhanced Recovery, Elsevier, Amsterdam–N.Y., 1987, 250 pp.

[10] Severov Ya. A., “Sravnenie gidrodinamicheskikh pokazatelei dvukhmernogo s trekhmernym modelirovaniem plasta”, Nauch. trudy Orenb. neftyan. aktsion. kompanii “ONAKO”, 3, 2001, 165–169

[11] Levi B. I., Surkov Yu. V., Tumasyan A. B., Metodika rascheta tekhnologicheskikh pokazatelei zavodneniya neodnorodnykh plastov vodnymi rastvorami PAV i karbonizirovannoi vodoi, ONTI BashNIPIneft, Ufa, 1974, 39 pp.

[12] Zaidel Ya. M., Levi B. I., “Ob ispolzovanii metoda osredneniya dlya resheniya prostranstvennykh zadach dvukhfaznoi filtratsii”, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1977, no. 3, 71–75

[13] Chekalin A. N., Kudryavtsev G. V., Mikhailov V. V., Issledovanie dvukh- i trekhkomponentnoi filtratsii v neftyanykh plastakh, Kazan. gos. un-t, Kazan, 1990, 148 pp.

[14] Sultanov R. A., “Obobschenie nekotorykh metodov osredneniya filtratsii v sloistykh plastakh pri vytesnenii nefti rastvorami khimreagentov”, Optimizatsiya neftedobychi i voprosy podzemnoi gidromekhaniki, Kazan. fiz.-tekhn. in-t, Kazan, 1987, 110–113

[15] Sultanov R. A., Slabnov V. D., Fukin I. A., Skvortsov V. V., “K probleme optimalnogo regulirovaniya protsessa izvlecheniya nefti s uchetom veroyatnostnogo zakona raspredeleniya nekotorogo parametra sloistogo plasta”, Problemy upravleniya, 2009, no. 6, 28–34

[16] Slabnov V. D., Sultanov R. A., “K zadache regulirovaniya tekuschei nefteotdachi v sloistom plaste”, Voprosy matematicheskogo modelirovaniya protsessov filtratsii i ratsionalnoi razrabotki neftyanykh mestorozhdenii, Kazan. fiz.-tekhn. in-t, Kazan, 1989, 44–48

[17] Slabnov V. D., Volkov Yu. A., Skvortsov V. V., “Vliyanie nekotorykh faktorov regulirovaniya na osnovnye pokazateli neftedobychi iz neodnorodnogo plasta”, Matem. modelirovanie, 14:1 (2002), 3–15 | Zbl

[18] Slabnov V. D., Skvortsov V. V., “Chislennoe opredelenie davleniya i optimalnykh pokazatelei skvazhin pri reshenii kraevykh zadach dvukhfaznoi filtratsii s pomoschyu lineinogo programmirovaniya”, Matem. modelirovanie, 21:11 (2009), 83–98 | Zbl

[19] Vabischevich P. N., Samarskii A. A., “Raznostnye skhemy dlya nestatsionarnykh zadach konvenktsii-diffuzii”, Zhurn. vychisl. matem. i matem. fiziki, 38:2 (1998), 207–219 | MR | Zbl