New metric characteristics of non-rectifiable curves with applications
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 31-38
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, the author summarizes the concept of Marcinkiewicz exponents, introduced earlier. These exponents are in fact new metric characteristics for non-rectifiable flat curves. The generalization that is presented here is used to solve boundary-value problems for holomorphic functions in domains whose boundaries are non-rectifiable.
Keywords: metric characteristics, fractals, Marcinkiewicz exponents.
Mots-clés : non-rectifiable curves
@article{UZKU_2014_156_4_a3,
     author = {D. B. Kats},
     title = {New metric characteristics of non-rectifiable curves with applications},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {31--38},
     year = {2014},
     volume = {156},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a3/}
}
TY  - JOUR
AU  - D. B. Kats
TI  - New metric characteristics of non-rectifiable curves with applications
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 31
EP  - 38
VL  - 156
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a3/
LA  - ru
ID  - UZKU_2014_156_4_a3
ER  - 
%0 Journal Article
%A D. B. Kats
%T New metric characteristics of non-rectifiable curves with applications
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 31-38
%V 156
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a3/
%G ru
%F UZKU_2014_156_4_a3
D. B. Kats. New metric characteristics of non-rectifiable curves with applications. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 31-38. http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a3/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977, 640 pp. | MR

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1962, 600 pp. | MR

[3] Kats B. A., “Kraevaya zadacha Rimana na nespryamlyaemoi zhordanovoi krivoi”, Dokl. AN SSSR, 267:4 (1982), 789–792 | MR | Zbl

[4] Kats B. A., “Zadacha Rimana na zamknutoi zhordanovoi krivoi”, Izvestiya vuzov. Matem., 1983, no. 4, 68–80 | MR | Zbl

[5] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Usp. matem. nauk, 14:2 (1959), 3–86 | MR | Zbl

[6] Feder E., Fraktaly, Mir, M., 1991, 254 pp. | MR

[7] Tricot C., Curves and Fractal Dimension, Springer-Verlag, N.Y., 1995, 338 pp. | MR | Zbl

[8] Falconer K. J., Fractal Geometry: Mathematical Foundations and Applications, Wiley Sons, 2014, 400 pp. | MR | Zbl

[9] Abreu-Blaya R., Bory-Reyes J., Kats B. A., “Integration over non-rectifiable curves and Riemann boundary value problems”, J. Math. Anal. Appl., 380:1 (2011), 177–187 | DOI | MR | Zbl

[10] Kats B. A., “Metricheskie kharakteristiki nespryamlyaemykh dug i zadacha o skachke”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 1, 2008, 56–64 | Zbl

[11] Kats B. A., “The refined metric dimension with applications”, Comput. Meth. Funct. Th., 7:1 (2007), 77–89 | DOI | MR | Zbl

[12] Kats B. A., “The Riemann boundary value problem on non-rectifiable curves and related questions”, Complex Variables and Elliptic Equations, 59:8 (2014), 1053–1069 | DOI | MR | Zbl

[13] Abreu-Blaya R., Bory-Reyes J., Kats B. A., “Cauchy integral and singular integral operator over closed Jordan curves”, Monatsh. Math., 176:1 (2015), 1–15 | DOI | MR | Zbl

[14] Kats D. B., “Pokazateli Martsinkevicha i ikh prilozheniya v kraevykh zadachakh”, Izv. vuzov. Matem., 2014, no. 3, 68–71 | MR | Zbl

[15] Stein I., Singulyarnye integraly i differentsialnye svoistv funktsii, Mir, M., 1973, 344 pp. | MR

[16] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988, 512 pp. | MR