@article{UZKU_2014_156_4_a10,
author = {Yu. A. Lebedev and A. V. Tatarinov and A. Yu. Titov and I. L. Epstein},
title = {Two-dimensional model of a~non-equilibrium strongly non-uniform microwave discharge in {a~DC} external field},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {120--132},
year = {2014},
volume = {156},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/}
}
TY - JOUR AU - Yu. A. Lebedev AU - A. V. Tatarinov AU - A. Yu. Titov AU - I. L. Epstein TI - Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2014 SP - 120 EP - 132 VL - 156 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/ LA - ru ID - UZKU_2014_156_4_a10 ER -
%0 Journal Article %A Yu. A. Lebedev %A A. V. Tatarinov %A A. Yu. Titov %A I. L. Epstein %T Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2014 %P 120-132 %V 156 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/ %G ru %F UZKU_2014_156_4_a10
Yu. A. Lebedev; A. V. Tatarinov; A. Yu. Titov; I. L. Epstein. Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 120-132. http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/
[1] Wertheimer M. R., Moisan M., “Processing of electronic materials by microwave plasma”, Pure Appl. Chem., 66:6 (1994), 1343–1352 | DOI
[2] Lieberman M. A., “Plasma Processing in the 21st Century”, XXVIIth ICPIG (Eindhoven, the Netherlands, 18–22 July, 2005), svobodnyi URL: http://event.cwi.nl/icpig05/cd/D:/pdf/00-459.pdf
[3] Asmussen J. (Jr.), Grotjohn T. A., Pengun Mak, Perrin M. A., “The design and application of electron cyclotron resonance discharges”, IEEE Trans. Plasma Sci., 25 (1997.), 1196–1221 | DOI
[4] Lebedev Yu. A., Mokeev M. V., Solomakhin P. V., Shakhatov V. A., Tatarinov A. V., Epstein I. L., “Physics and microstructure of electrode microwave discharge”, J. Phys. D: Appl. Phys., 41:19 (2008), Art. 194001, 4 pp. | DOI
[5] Lebedev Yu. A., Epstein I. L., Tatarinov A. V., Shakhatov V. A., “Electrode microwave discharge: areas of application and recent results of discharge physics”, J. Phys.: Conf. Series, 207:1 (2010), Art. 012002, 10 pp.
[6] Yu. A. Lebedev, N. A. Plate, V. E. Fortov (red.), Entsiklopediya nizkotemperaturnoi plazmy, v. VIII-1, Khimiya nizkotemperaturnoi plazmy, Yanus-K, M., 2005, 567 pp.
[7] Lebedev Yu. A., Tatarinov A. V., Epshtein I. L., “Elektrodnyi mikrovolnovyi razryad v postoyannom pole”, Teplofizika vysokikh temperatur, 45:3 (2007), 325–332
[8] Lebedev Yu. A., Yusupova E. V., “Vliyanie postoyannogo polya na pripoverkhnostnuyu plazmu silno neodnorodnogo SVCh razryada”, Fizika plazmy, 38:8 (2012), 677–693
[9] Lebedev Yu. A., Epshtein I. L., Yusupova E. V., “Vliyanie postoyannogo polya na prielektrodnuyu oblast neodnorodnogo SVCh-razryada v vodorode”, Teplofizika vysokikh temperatur, 52:2 (2014), 167–173 | DOI
[10] Lebedev Yu. A., Mavludov T. B., Epstein I. L., Chvyreva A. V., Tatarinov A. V., “The effect of small additives of argon on the parameters of a non-uniform microwave discharge in nitrogen at reduced pressures”, Plasma Sources Sci. Technol., 21:1 (2012), Art. 015015 | DOI
[11] Lebedev Yu. A., Epstein I. L., Yusupova E. V., “Vibrational distribution of nitrogen molecules in the $\mathrm{C_3\Pi_u}$ state in a near-surface microwave plasma in nitrogen at pressures of 1–5 Torr”, Plasma Physics Reports, 39:2 (2013), 183–187 | DOI
[12] Raizer Yu. P., Fizika gazovogo razryada, Nauka, M., 1987, 592 pp.
[13] Hagelaar G. J. M., Pitchford L. C., “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models”, Plasma Sources Sci. Technol., 14:4 (2005), 722–733 | DOI
[14] Lebedev Yu. A., Epshtein I. L., “Simulation of microwave plasma in hydrogen”, J. Moscow Phys. Soc., 5 (1995), 103–120
[15] Capitelli M., Ferreira C. M., Gordiets B. F., Osipov A. I., Plasma Kinetics in Atmospheric Gases, Springer, Berlin–Heidelberg, 2000, 300 pp.
[16] Gordiets B. F., Osipov A. I., Shelepin L. A., Kineticheskie protsessy v gazakh i molekulyarnye lazery, Nauka, M., 1980, 512 pp. | MR
[17] Mitchell A. C. G., Zemansky M. W., Resonance radiation and excited atoms, Cambridge Univ. Press, Cambridge, 1961, 338 pp. | Zbl
[18] Holstein T., “Imprisonment of resonance radiation in gases”, Phys. Rev., 72:12 (1947), 1212–1233 | DOI | Zbl
[19] Walsh P., “Effect of simultaneous Doppler and collision broadening and of hyperfine structure on the imprisonment of resonance radiation”, Phys. Rev., 116:3 (1959), 511–515 | DOI
[20] Biberman L. M., Vorobev V. S., Yakubov I. T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy, Nauka, M., 1982, 378 pp.
[21] Karoulina E. V., Lebedev Yu. A., “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas”, J. Phys. D: Appl. Phys., 25:3 (1992), 401–412 | DOI
[22] Koschmieder H., Raible V., Kleinpoppen H., “Resonance structure in the excitation cross section by electron impact of the $2s$ state in atomic hydrogen”, Phys. Rev. A, 8:3 (1973), 1365–1368 | DOI
[23] Mahan A. H., Gallagher A., Smith S. J., “Electron impact excitation of the $3S$, $3P$, and $3D$ states of $\mathrm H$”, Phys. Rev. A, 13:1 (1976), 156–166 | DOI
[24] Tawara H., Itikawa Y., Nishimura H., Yoshino M., “Cross sections and related data for electron collisions with hydrogen molecules and molecular ions”, J. Phys. Chem. Ref. Data, 19:3 (1990), 617–636 | DOI
[25] Slocomb C., Miller W., Shaefer H., “Collisional Quenching of Metastable Hydrogen Atoms”, J. Chem. Phys., 55 (1971), 926–932 | DOI
[26] Rousseau A., Granier A., Gousset G., Leprince P., “Microwave discharge in $\mathrm H_2$: influence of H-atom density on the power balance”, J. Phys. D: Appl. Phys., 27:7 (1994), 1412–1422 | DOI
[27] Cacciatore M., Capitelli M., Gorse C., “Non-equilibrium ionisation of molecular hydrogen in electrical discharges”, J. Phys. D: Appl. Phys., 13:4 (1980), 575–582 | DOI
[28] Rapp D., Englander-Golden P., “Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization”, J. Chem. Phys., 43:5 (1965), 1464–1479 | DOI
[29] Cacciatore M., Capitelli M., Dilonardo M., “A joint vibro-electronic mechanism in the dissociation of molecular hydrogen in nonequilibrium plasmas”, Chem. Phys., 34:2 (1978), 193–204 | DOI
[30] Wiese W. L., Smith M. W., Glennon B. M., Atomic Transition Probabilities, in 2 vol., National Bureau of Standards, Washington, DC, 1966
[31] Bowers M. T., Elleman D. D., King J. (Jr.), “Analysis of the ion-molecule reactions in gaseous $\mathrm H_2$, $\mathrm D_2$, and $\mathrm{HD}$ by ion cyclotron resonance techniques”, J. Chem. Phys., 50:11 (1969), 4787–4804 | DOI
[32] COMSOL 3.5a, URL: http://www.comsol.com