Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 120-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A self-consistent model of a non-equilibrium strongly inhomogeneous microwave discharge is described. The model is based on the simultaneous solution of the Maxwell equations, Poisson equation, Boltzmann equation for free plasma electrons, and the equations describing the vibrational kinetics and the kinetics of excited and charged particles in hydrogen plasma. The results of the first calculations are presented, which are in qualitative agreement with the experimental data.
Keywords: microwave plasma, discharge in hydrogen, self-consistent modeling, non-equilibrium plasma.
@article{UZKU_2014_156_4_a10,
     author = {Yu. A. Lebedev and A. V. Tatarinov and A. Yu. Titov and I. L. Epstein},
     title = {Two-dimensional model of a~non-equilibrium strongly non-uniform microwave discharge in {a~DC} external field},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {120--132},
     year = {2014},
     volume = {156},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/}
}
TY  - JOUR
AU  - Yu. A. Lebedev
AU  - A. V. Tatarinov
AU  - A. Yu. Titov
AU  - I. L. Epstein
TI  - Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 120
EP  - 132
VL  - 156
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/
LA  - ru
ID  - UZKU_2014_156_4_a10
ER  - 
%0 Journal Article
%A Yu. A. Lebedev
%A A. V. Tatarinov
%A A. Yu. Titov
%A I. L. Epstein
%T Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 120-132
%V 156
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/
%G ru
%F UZKU_2014_156_4_a10
Yu. A. Lebedev; A. V. Tatarinov; A. Yu. Titov; I. L. Epstein. Two-dimensional model of a non-equilibrium strongly non-uniform microwave discharge in a DC external field. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 120-132. http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a10/

[1] Wertheimer M. R., Moisan M., “Processing of electronic materials by microwave plasma”, Pure Appl. Chem., 66:6 (1994), 1343–1352 | DOI

[2] Lieberman M. A., “Plasma Processing in the 21st Century”, XXVIIth ICPIG (Eindhoven, the Netherlands, 18–22 July, 2005), svobodnyi URL: http://event.cwi.nl/icpig05/cd/D:/pdf/00-459.pdf

[3] Asmussen J. (Jr.), Grotjohn T. A., Pengun Mak, Perrin M. A., “The design and application of electron cyclotron resonance discharges”, IEEE Trans. Plasma Sci., 25 (1997.), 1196–1221 | DOI

[4] Lebedev Yu. A., Mokeev M. V., Solomakhin P. V., Shakhatov V. A., Tatarinov A. V., Epstein I. L., “Physics and microstructure of electrode microwave discharge”, J. Phys. D: Appl. Phys., 41:19 (2008), Art. 194001, 4 pp. | DOI

[5] Lebedev Yu. A., Epstein I. L., Tatarinov A. V., Shakhatov V. A., “Electrode microwave discharge: areas of application and recent results of discharge physics”, J. Phys.: Conf. Series, 207:1 (2010), Art. 012002, 10 pp.

[6] Yu. A. Lebedev, N. A. Plate, V. E. Fortov (red.), Entsiklopediya nizkotemperaturnoi plazmy, v. VIII-1, Khimiya nizkotemperaturnoi plazmy, Yanus-K, M., 2005, 567 pp.

[7] Lebedev Yu. A., Tatarinov A. V., Epshtein I. L., “Elektrodnyi mikrovolnovyi razryad v postoyannom pole”, Teplofizika vysokikh temperatur, 45:3 (2007), 325–332

[8] Lebedev Yu. A., Yusupova E. V., “Vliyanie postoyannogo polya na pripoverkhnostnuyu plazmu silno neodnorodnogo SVCh razryada”, Fizika plazmy, 38:8 (2012), 677–693

[9] Lebedev Yu. A., Epshtein I. L., Yusupova E. V., “Vliyanie postoyannogo polya na prielektrodnuyu oblast neodnorodnogo SVCh-razryada v vodorode”, Teplofizika vysokikh temperatur, 52:2 (2014), 167–173 | DOI

[10] Lebedev Yu. A., Mavludov T. B., Epstein I. L., Chvyreva A. V., Tatarinov A. V., “The effect of small additives of argon on the parameters of a non-uniform microwave discharge in nitrogen at reduced pressures”, Plasma Sources Sci. Technol., 21:1 (2012), Art. 015015 | DOI

[11] Lebedev Yu. A., Epstein I. L., Yusupova E. V., “Vibrational distribution of nitrogen molecules in the $\mathrm{C_3\Pi_u}$ state in a near-surface microwave plasma in nitrogen at pressures of 1–5 Torr”, Plasma Physics Reports, 39:2 (2013), 183–187 | DOI

[12] Raizer Yu. P., Fizika gazovogo razryada, Nauka, M., 1987, 592 pp.

[13] Hagelaar G. J. M., Pitchford L. C., “Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models”, Plasma Sources Sci. Technol., 14:4 (2005), 722–733 | DOI

[14] Lebedev Yu. A., Epshtein I. L., “Simulation of microwave plasma in hydrogen”, J. Moscow Phys. Soc., 5 (1995), 103–120

[15] Capitelli M., Ferreira C. M., Gordiets B. F., Osipov A. I., Plasma Kinetics in Atmospheric Gases, Springer, Berlin–Heidelberg, 2000, 300 pp.

[16] Gordiets B. F., Osipov A. I., Shelepin L. A., Kineticheskie protsessy v gazakh i molekulyarnye lazery, Nauka, M., 1980, 512 pp. | MR

[17] Mitchell A. C. G., Zemansky M. W., Resonance radiation and excited atoms, Cambridge Univ. Press, Cambridge, 1961, 338 pp. | Zbl

[18] Holstein T., “Imprisonment of resonance radiation in gases”, Phys. Rev., 72:12 (1947), 1212–1233 | DOI | Zbl

[19] Walsh P., “Effect of simultaneous Doppler and collision broadening and of hyperfine structure on the imprisonment of resonance radiation”, Phys. Rev., 116:3 (1959), 511–515 | DOI

[20] Biberman L. M., Vorobev V. S., Yakubov I. T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy, Nauka, M., 1982, 378 pp.

[21] Karoulina E. V., Lebedev Yu. A., “Computer simulation of microwave and DC plasmas: comparative characterization of plasmas”, J. Phys. D: Appl. Phys., 25:3 (1992), 401–412 | DOI

[22] Koschmieder H., Raible V., Kleinpoppen H., “Resonance structure in the excitation cross section by electron impact of the $2s$ state in atomic hydrogen”, Phys. Rev. A, 8:3 (1973), 1365–1368 | DOI

[23] Mahan A. H., Gallagher A., Smith S. J., “Electron impact excitation of the $3S$, $3P$, and $3D$ states of $\mathrm H$”, Phys. Rev. A, 13:1 (1976), 156–166 | DOI

[24] Tawara H., Itikawa Y., Nishimura H., Yoshino M., “Cross sections and related data for electron collisions with hydrogen molecules and molecular ions”, J. Phys. Chem. Ref. Data, 19:3 (1990), 617–636 | DOI

[25] Slocomb C., Miller W., Shaefer H., “Collisional Quenching of Metastable Hydrogen Atoms”, J. Chem. Phys., 55 (1971), 926–932 | DOI

[26] Rousseau A., Granier A., Gousset G., Leprince P., “Microwave discharge in $\mathrm H_2$: influence of H-atom density on the power balance”, J. Phys. D: Appl. Phys., 27:7 (1994), 1412–1422 | DOI

[27] Cacciatore M., Capitelli M., Gorse C., “Non-equilibrium ionisation of molecular hydrogen in electrical discharges”, J. Phys. D: Appl. Phys., 13:4 (1980), 575–582 | DOI

[28] Rapp D., Englander-Golden P., “Total cross sections for ionization and attachment in gases by electron impact. I. Positive ionization”, J. Chem. Phys., 43:5 (1965), 1464–1479 | DOI

[29] Cacciatore M., Capitelli M., Dilonardo M., “A joint vibro-electronic mechanism in the dissociation of molecular hydrogen in nonequilibrium plasmas”, Chem. Phys., 34:2 (1978), 193–204 | DOI

[30] Wiese W. L., Smith M. W., Glennon B. M., Atomic Transition Probabilities, in 2 vol., National Bureau of Standards, Washington, DC, 1966

[31] Bowers M. T., Elleman D. D., King J. (Jr.), “Analysis of the ion-molecule reactions in gaseous $\mathrm H_2$, $\mathrm D_2$, and $\mathrm{HD}$ by ion cyclotron resonance techniques”, J. Chem. Phys., 50:11 (1969), 4787–4804 | DOI

[32] COMSOL 3.5a, URL: http://www.comsol.com