Theory of invariant variational problems and its applications
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 5-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A brief review of the works on the modified theory of invariant variational problems and its applications, developed by the author, is presented. The research is based on the infinitesimal Li–Ovsyannikov formalism and E. Noether's fundamental idea of invariant functionals. Theorems on generalized invariance are proved, and the application of the developed theory to the solution of optimal problems of mathematical physics is discussed.
Keywords: Lee group, integral invariant, functional invariance, Noether's generalized theorem, Pontryagin's maximum principle
Mots-clés : Bellman's equation.
@article{UZKU_2014_156_4_a0,
     author = {K. G. Garaev},
     title = {Theory of invariant variational problems and its applications},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--13},
     year = {2014},
     volume = {156},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a0/}
}
TY  - JOUR
AU  - K. G. Garaev
TI  - Theory of invariant variational problems and its applications
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 5
EP  - 13
VL  - 156
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a0/
LA  - ru
ID  - UZKU_2014_156_4_a0
ER  - 
%0 Journal Article
%A K. G. Garaev
%T Theory of invariant variational problems and its applications
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 5-13
%V 156
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a0/
%G ru
%F UZKU_2014_156_4_a0
K. G. Garaev. Theory of invariant variational problems and its applications. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 4, pp. 5-13. http://geodesic.mathdoc.fr/item/UZKU_2014_156_4_a0/

[1] Lie S., “Die Theorie der Integralinvarianten ist ein Corollar der Theorie der Differentialinvarianten”, Leipz. Berich., 49:3 (1897), 342–357 | Zbl

[2] Noether E., “Invariante Variationsprobleme”, Nachr. Konig. Gesell. Wissen. Gottingen, Math.-Phys. Kl., 1918 (1918), 235–257 ; Neter E., “Invariantnye variatsionnye zadachi”, Variatsionnye printsipy mekhaniki, Sb. st., Fizmatgiz, M., 1959, 611–630 | Zbl

[3] Vizgin V. P., Razvitie vzaimosvyazi printsipov invariantnosti s zakonami sokhraneniya v klassicheskoi fizike, Nauka, M., 1979, 239 pp.

[4] Bessel-Hagen E., “Uber die Erhaltungssatze der Elektrodynamik”, Matn. Ann., 84 (1921), 258–276 | DOI | MR | Zbl

[5] Steudel H., “Eine Erweiterung des ersten Noetherschen Satzes”, Zeitschrift Naturforschung Teil A, 17 (1962), 133–135 | MR

[6] Garaev K. G., “Zamechanie k teorii Neter”, Izv. vuzov. Matem., 1989, no. 5, 69–71 | MR | Zbl

[7] Ibragimov N. Kh., “Invariantnye variatsionnye zadachi i ikh zakony sokhraneniya”, Teor. i matem. fizika, 1:3 (1969), 350–359 | MR

[8] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 399 pp. | MR

[9] Garaev K. G., “On the problem of modified theory of invariant variation problems construction”, Geometry and Topology of Submanifolds IX, World Sci. Publ., 1999, 139–147 | DOI | MR

[10] Garaev K. G., Gruppy Li i teoriya Neter v probleme upravleniya s prilozheniyami k optimalnym zadacham pogranichnogo sloya, Izd-vo Kazan. gos. tekhn. un-ta, Kazan, 1994, 240 pp.

[11] Shmuttser E., Osnovnye printsipy klassicheskoi mekhaniki i teorii polya, Mir, M., 1976, 158 pp.

[12] Berdichevskii V. L., Variatsionnye printsipy mekhaniki sploshnoi sredy, Nauka, M., 1983, 445 pp. | MR

[13] Djukic D. S., “Noether's theorem for optimum control systems”, Int. J. Control, 18:3 (1973), 667–672 | DOI | MR | Zbl

[14] Garaev K. G., “Ob invariantnykh variatsionnykh zadachakh”, Materialy I Povolzhskoi konf. po avtomaticheskomu upravleniyu, Tatknigoizdat, Kazan, 1971, 121–129

[15] Sirazetdinov T. K., Divakov O. G., “Optimalnoe upravlenie pogranichnym sloem”, Izv. vuzov. Aviats. tekhnika, 1969, no. 3, 5–13

[16] Garaev K. G., “Ob optimalnom upravlenii teplomassoobmenom v laminarnom pogranichnom sloe szhimaemogo gaza na pronitsaemykh poverkhnostyakh”, Izv. AN SSSR. Mekhanika zhidkosti i gaza, 1988, no. 3, 92–100 | Zbl

[17] Garaev K. G., Ovchinnikov V. A., “Invariantnye kraevye zadachi optimalno upravlyaemogo pogranichnogo sloya”, Prikl. mekhanika i tekhn. fizika, 44:1 (2003), 33–38 | MR | Zbl

[18] Garaev K. G., Ovchinnikov V. A., Bilchenko N. G., Invariantnye variatsionnye zadachi laminarnogo pogranichnogo sloya pri razlichnykh rezhimakh techeniya, Izd-vo KGTU-KAI, Kazan, 2003, 122 pp.

[19] Garaev K. G., Kuznetsov V. K., “Ob odnoi invariantnoi variatsionnoi zadache laminarnogo pogranichnogo sloya”, Prikl. matem. i mekhanika, 75:4 (2011), 572–580 | MR | Zbl

[20] Babichev A. V., “Invariantnost fazovogo portreta i analog teoremy Neter dlya dinamicheskikh sistem s upravleniem”, Tez. dokl. 6-i Vsesoyuz. konf. po upravleniyu v mekhanicheskikh sistemakh, In-t prikl. problem mekhaniki i matematiki AN USSR, Lvov, 1988, 13

[21] Garaev K. G., “Teoriya invariantnykh variatsionnykh zadach v probleme optimizatsii dinamicheskikh sistem s upravleniem”, Avtomatika i telemekhanika, 1992, no. 9, 49–56 | MR | Zbl

[22] Garaev K. G., “Remark on the Bellman principle of Optimality”, Journal of the Franklin Institute, 335:2 (1998), 395–400 | DOI | MR

[23] Garaev K. G., Teoriya invariantnykh variatsionnykh zadach v probleme optimalnogo upravleniya, Izd-vo KGTU-KAI, Kazan, 2005, 152 pp.