On the closed classes of $k$-valued logic functions taking no more than three values
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 98-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers $k$-valued logic functions where $k=2^m$, $m\geq2$. A $\beta$-closure operator is defined based on their encoding in the binary numeral system. A special mapping of all $\beta$-closed classes to a set of closed classes of Boolean functions is denoted. The cardinality of a set of $\beta$-closed classes which are mapped to a class $\mathcal B$ and contain only functions taking no more than three values is studied in this paper for each class $\mathcal B$ of Boolean functions.
Keywords: multi-valued logic, closed classes, closure operator, $\beta$-closure, superposition strengthening, binary superposition.
@article{UZKU_2014_156_3_a9,
     author = {D. K. Podolko},
     title = {On the closed classes of $k$-valued logic functions taking no more than three values},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {98--109},
     year = {2014},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a9/}
}
TY  - JOUR
AU  - D. K. Podolko
TI  - On the closed classes of $k$-valued logic functions taking no more than three values
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 98
EP  - 109
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a9/
LA  - ru
ID  - UZKU_2014_156_3_a9
ER  - 
%0 Journal Article
%A D. K. Podolko
%T On the closed classes of $k$-valued logic functions taking no more than three values
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 98-109
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a9/
%G ru
%F UZKU_2014_156_3_a9
D. K. Podolko. On the closed classes of $k$-valued logic functions taking no more than three values. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 98-109. http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a9/

[1] Yanov Yu. I., Muchnik A. A., “O suschestvovanii $k$-znachnykh zamknutykh klassov, ne imeyuschikh konechnogo bazisa”, Dokl. AN SSSR, 127:1 (1959), 44–46 | Zbl

[2] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vyssh. shk., M., 2001, 384 pp. | MR

[3] Yablonskii S. V., “O funktsionalnoi polnote v trekhznachnom ischislenii”, Dokl. AN SSSR, 95:6 (1954), 1152–1156 | MR

[4] Słupecki J., “Kriterium pełnosci wielowartosciowych systemow logiki zdań”, C. R. Séanc. Soc. Sci. Varsovie Cl. III, 32 (1939), 102–109

[5] Rosenberg I. G., “La structure des functions de plusieurs variables sur un ensemble fini”, C. R. Acad. Sci. Paris, 260 (1965), 3817–3819 | MR | Zbl

[6] Rosenberg I. G., “Über die funktionale Vollständigkeit in den mehrwertigen Logiken”, Rozpr. ČSAV Řada Mat. Přiv. Věd. Praha, 80 (1970), 3–93 | MR

[7] Marchenkov S. S., “$S$-klassifikatsiya funktsii mnogoznachnoi logiki”, Diskretnaya matem., 9:3 (1997), 125–152 | DOI | MR | Zbl

[8] Nguen Van Khoa, “Opisanie zamknutykh klassov $k$-znachnoi logiki, sokhranyaemykh vsemi avtomorfizmami”, Dokl. AN Belarusi, 38:3 (1994), 16–19 | MR

[9] Tarasova O. S., “Klassy funktsii $k$-znachnoi logiki, zamknutye otnositelno operatsii superpozitsii i perestanovok”, Matem. voprosy kibernetiki, 13, Fizmatlit, M., 2004, 59–112 | MR

[10] Podolko D. K., “O klassakh funktsii, zamknutykh otnositelno spetsialnoi operatsii superpozitsii”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhanika, 2013, no. 6, 54–57 | MR

[11] Podolko D. K., “Ob odnom kontinualnom semeistve $\beta$-zamknutykh klassov funktsii mnogoznachnoi logiki”, Prikl. diskretnaya matem., 2014, no. 2(24), 12–20

[12] Ugolnikov A. B., Klassy Posta, Izd-vo TsPI pri mekh.-matem. fak. MGU im. M. V. Lomonosova, M., 2008, 64 pp.