A cybernetic model of cyclic control of conflicting flows with an after-effect
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 66-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Lyapunov–Yablonsky approach has been used to construct a mathematical model of the service process of conflicting input flows in the class of cyclic algorithms with re-adjustments. To define input flows with dependent inter-arrival intervals, a non-local description has been used. The flowcharts, information, coordinates, and function of the queueing system have been selected and described non-locally. A multi-dimensional Markov chain has been constructed with an uncountable measurable state space, which describes changes in the server state, fluctuations in the queue size, and states of the input flows. Some properties of the stochastic transition kernel have been established.
Keywords: controlling system, conflicting input flows, non-ordinary recurrent flow, non-local description, general Markov chain.
@article{UZKU_2014_156_3_a6,
     author = {A. V. Zorine},
     title = {A~cybernetic model of cyclic control of conflicting flows with an after-effect},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {66--75},
     year = {2014},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a6/}
}
TY  - JOUR
AU  - A. V. Zorine
TI  - A cybernetic model of cyclic control of conflicting flows with an after-effect
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 66
EP  - 75
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a6/
LA  - ru
ID  - UZKU_2014_156_3_a6
ER  - 
%0 Journal Article
%A A. V. Zorine
%T A cybernetic model of cyclic control of conflicting flows with an after-effect
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 66-75
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a6/
%G ru
%F UZKU_2014_156_3_a6
A. V. Zorine. A cybernetic model of cyclic control of conflicting flows with an after-effect. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 66-75. http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a6/

[1] Lyapunov A. A., Yablonskii S. V., “Teoreticheskie problemy kibernetiki”, Problemy kibernetiki, 9, Fizmatgiz, M., 1963, 5–22

[2] Fedotkin M. A., “Protsessy obsluzhivaniya i upravlyayuschie sistemy”, Matematicheskie voprosy kibernetiki, 6, ed. S. V. Yablonskii, Nauka, Fizmatlit, M., 1996, 51–70 | MR

[3] Fedotkin M. A., “Nelokalnyi sposob zadaniya upravlyaemykh sluchainykh protsessov”, Matematicheskie voprosy kibernetiki, 7, ed. S. V. Yablonskii, Nauka, M., 1998, 333–344 | MR

[4] Zorin A. V., Fedotkin M. A., Sistema s razdeleniem vremeni v usloviyakh izmeneniya struktury obsluzhivayuschego ustroistva i struktury vkhodnykh potokov, Dep. v VINITI 19.09.03, No 1704-B2003, N. Novgorod, 2003

[5] Zorin A. V., “Kiberneticheskii podkhod k postroeniyu i analizu matematicheskoi modeli tandema dvukh perekrestkov”, Problemy teoreticheskoi kibernetiki, Materialy XVI Mezhdunar. konf. (N. Novgorod, 20–25 iyunya 2011 g.), ed. Yu. I. Zhuravlev, Izd-vo Nizhegor. un-ta, N. Novgorod, 2011, 179–183

[6] Fedotkin M. A., Kudryavtsev E. V., “Upravlyayuschie sistemy i mekhanizm obrazovaniya transportnykh pachek na magistralyakh s intensivnym dvizheniem”, Problemy teoreticheskoi kibernetiki, Materialy XVI Mezhdunar. konf. (N. Novgorod, 20–25 iyunya 2011 g.), ed. Yu. I. Zhuravlev, Izd-vo Nizhegor. un-ta, N. Novgorod, 2011, 503–507

[7] Fedotkin M. A., Rachinskaya M. V., “Issledovanie matematicheskoi modeli trafika avtomobilei na osnove podkhoda Lyapunova–Yablonskogo”, Problemy teoreticheskoi kibernetiki, Materialy XVI Mezhdunar. konf. (N. Novgorod, 20–25 iyunya 2011 g.), ed. Yu. I. Zhuravlev, Izd-vo Nizhegor. un-ta, N. Novgorod, 2011, 508–512

[8] Fedotkin M. A., Fedotkin A. M., “Kiberneticheskii podkhod k izucheniyu vykhodnykh protsessov upravleniya potokami Bartletta”, Problemy teoreticheskoi kibernetiki, Materialy XVI Mezhdunar. konf. (N. Novgorod, 20–25 iyunya 2011 g.), ed. Yu. I. Zhuravlev, Izd-vo Nizhegor. un-ta, N. Novgorod, 2011, 512–516

[9] Zorine A. V., “Stability of a tandem of queueing systems with Bernoulli noninstantenous transfer of customer”, Theor. Probability and Math. Statist., 84 (2012), 173–188 | DOI | MR

[10] Fedotkin M. A., Rachinskaya M. A., “Parameters estimator of the probabilistic model of batches traffic flow with the non-intensive movement”, Distributed computer and communication networks: control, computation, communication, Tekhnosfera, M., 2013, 357–364

[11] Fedotkin M. A., Kudryavtsev E. V., “Otsenka parametrov veroyatnostnoi modeli intensivnogo transportnogo potoka”, Distributed computer and communication networks: control, computation, communication, Tekhnosfera, M., 2013, 373–378

[12] Nummelin E., Obschie neprivodimye tsepi Markova i neotritsatelnye operatory, M. Mir, 1989, 207 pp. | MR

[13] Meyn S. P., Tweedie R. L., Markov chains and stochastic stability, Springer-Verlag, London, 1993, 566 pp. | MR | Zbl

[14] Nevë Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 310 pp. | MR | Zbl