Mots-clés : circuit codes
@article{UZKU_2014_156_3_a5,
author = {A. A. Evdokimov},
title = {Circuit codes and the {Snake-in-the-Box} {Problem}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {55--65},
year = {2014},
volume = {156},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a5/}
}
A. A. Evdokimov. Circuit codes and the Snake-in-the-Box Problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 55-65. http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a5/
[1] Kautz W. H., “Unit-distance error-checking codes”, IRE Trans. Electron. Comp., EC-7:2 (1958), 179–180 | DOI
[2] Zhuravlev Yu. I., “Teoretiko-mnozhestvennye metody v algebre logiki”, Problemy kibernetiki, 8, Fizmatlit, M., 1962, 5–44
[3] Klee V., “What is the maximum length of a $d$-dimensional snake?”, Am. Math. Monthly, 77:1 (1970), 63–65 | DOI
[4] Vasilev Yu. L., “O dline tsikla v $n$-mernom edinichnom kube”, Dokl. AN SSSR, 148:4 (1963), 753–756 | MR | Zbl
[5] Danzer L., Klee V., “Length of snakes in boxes”, J. Combin. Theory, 2 (1967), 258–265 | DOI | MR | Zbl
[6] Evdokimov A. A., “O maksimalnoi dline tsepi v edinichnom $n$-mernom kube”, Matem. zametki, 6:3 (1969), 309–319 | MR | Zbl
[7] Evdokimov A. A., O maksimalnoi dline tsepi v $n$-mernom edinichnom kube i nekotorykh rodstvennykh zadachakh, Dis. $\dots$ kand. fiz.-matem. nauk, Novosibirsk, 1971, 60 pp.
[8] S. V. Yablonskii, O. B. Lupanov (red.), Diskretnaya matematika i matematicheskie voprosy kibernetiki, v. I, Nauka, M., 1974, 313 pp. | Zbl
[9] Abbott H., Katchalski M., “On the snake in the box problem”, J. Combin. Theory Ser. B, 45:1 (1988), 13–24 | DOI | MR | Zbl
[10] Abbott H., Katchalski M., “On the construction of snake-in-the-box codes”, Utilitas Math., 40 (1991), 97–116 | MR | Zbl
[11] Wojciechowski J., “A new lower bound for snake-in-the-box codes”, Combinatorica, 9:1 (1989), 91–99 | DOI | MR | Zbl
[12] Evdokimov A. A., “Vlozhenie tsepei i tsiklov v giperkub. I”, Metody diskretnogo analiza v reshenii ekstremalnykh zadach, 50, In-t matematiki SO AN SSSR, Novosibirsk, 1990, 10–25 | MR
[13] Evdokimov A. A., “O numeratsii podmnozhestv konechnogo mnozhestva”, Metody diskretnogo analiza v reshenii kombinatornykh zadach, 34, In-t matematiki SO AN SSSR, Novosibirsk, 1980, 8–26 | MR
[14] Glagolev V. V., Evdokimov A. A., “O minimalnoi raskraske odnogo beskonechnogo grafa”, Diskretnyi analiz, 17, In-t matematiki SO AN SSSR, Novosibirsk, 1970, 9–17 | MR
[15] Evdokimov A. A., Perezhogin A. L., “Upravlyayuschie simvolnye posledovatelnosti v alfavite naimenshei moschnosti”, Materialy konf. “Diskretnyi analiz i issledovanie operatsii”, Izd-vo IM SO RAN, Novosibirsk, 2004, 84
[16] Wagner A. S., Embeedding Treesin the Hypercube, Ph. D. Diss., University of Toronto, Toronto, 1987, 118 pp.
[17] Deza M. M., Laurent M., Geometry of cuts and metrics, Algorithms and Combinatorics, 15, Springer-Verlag, Berlin, 1997, 587 pp. | DOI | MR | Zbl
[18] Glagolev V. V., “Verkhnyaya otsenka dliny tsikla v $n$-mernom edinichnom kube”, Diskretnyi analiz, 6, In-t matematiki SO AN SSSR, Novosibirsk, 1966, 3–7 | MR
[19] Larman D. G., “On the right lower circular density of two-dimensional Jordan curves in the plane”, Math. Proc. Cambridge Phil. Soc., 64:1 (1968), 67–70 | DOI | MR | Zbl
[20] Douglas R. J., “Upper bounds on the length of circuits of even spread in the $d$-cube”, J. Combin. Theor., 7 (1969), 206–214 | DOI | MR | Zbl
[21] Zemor G., “An upper bound on the size of the snake-in-the-box”, Combinatorica, 17:2 (1997), 287–298 | DOI | MR | Zbl
[22] Deimer K., “Anew upper bound for the length of snakes”, Combinatorica, 5:2 (1985), 109–120 | DOI | MR | Zbl
[23] Solov'jeva F. I., “An upper bound for the length of a cycle in an $n$-dimensional unit cube”, Diskretnyi Analiz, 45, 1987, 71–76 (in Russian) | MR
[24] Snevily H. S., “The snake-in-the-box problem: A new upper bound”, Discrete Math., 133:1–3 (1994), 307–314 | DOI | MR | Zbl
[25] Emelyanov P. G., “O verkhnei otsenke dliny zmei v edinichnom $n$-mernom kube”, Diskretnyi analiz i issled. operatsii, 2:3 (1995), 10–17 | MR | Zbl
[26] Lukito A., van Zanten A. J., “A new non-asymptotic upper bound for snake-in-the-box codes”, J. Combin. Math. Combin. Comput., 39 (2001), 147–156 | MR | Zbl
[27] Korshunov A. D., “O verkhnei otsenke dliny “zmei” v $n$-mernom bulevom kube”, Materialy XIII Mezhdunar. konf. “Problemy teoreticheskoi kibernetiki”, Ch. I, Izd-vo tsentra prikl. issled. pri mekh.-matem. fak. MGU, M., 2002, 96–97
[28] Evdokimov A. A., Malyugin S. A., “Kod “zmeya v yaschike” i puti v reshetke na tore”, Matematika segodnya, Vischa shk., Kiev, 1987, 108–116 | MR
[29] Singleton R. C., “Generalized snake-in-the-box codes”, IEEE Trans. Electron. Comp., EC-15:4 (1966), 596–602 | DOI
[30] Leontev V. K., “O nekotorykh kombinatornykh zadachakh teoretiko-chislovogo soderzhaniya”, Matem. zametki, 86:3 (2009), 402–407 | DOI | MR | Zbl
[31] Kurlyandchik Ya. M., “O logarifmicheskoi asimptotike dliny maksimalnogo tsikla razbrosa $r>2$”, Diskretnyi analiz, 19, In-t matematiki SO AN SSSR, Novosibirsk, 1971, 48–55
[32] Evdokimov A. A., “Tsepnye kody s proizvolnym rasstoyaniem”, Dokl. AN SSSR, 228:6 (1976), 1273–1276 | MR | Zbl
[33] Korshunov A. D., “Nekotorye nereshennye zadachi diskretnoi matematiki i matematicheskoi kibernetiki”, Usp. matem. nauk, 64:5(389) (2009), 3–20 | DOI | MR | Zbl
[34] Kochut K. J., “Snake-in-the-box codes for dimension 7”, J. Combin. Math. Combin. Comput., 20 (1996), 175–185 | MR | Zbl
[35] Klee V., “A method for constructing circuit codes”, Journal of the ACM, 14:3 (1967), 520–528 | DOI | MR | Zbl
[36] Preparata F. P., Nievergelt J., “Difference-preserving codes”, IEEE Trans. Info. Theory, IT-20:5 (1974), 643–649 | DOI | MR | Zbl