@article{UZKU_2014_156_3_a3,
author = {A. F. Gainutdinova},
title = {Complexity of branching programs for partial functions},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {30--48},
year = {2014},
volume = {156},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a3/}
}
TY - JOUR AU - A. F. Gainutdinova TI - Complexity of branching programs for partial functions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2014 SP - 30 EP - 48 VL - 156 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a3/ LA - ru ID - UZKU_2014_156_3_a3 ER -
A. F. Gainutdinova. Complexity of branching programs for partial functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 30-48. http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a3/
[1] Sholomov L. A., Osnovy teorii diskretnykh logicheskikh i vychislitelnykh ustroistv, Nauka, M., 1980, 400 pp. | Zbl
[2] Rabin M., “Veroyatnostnye avtomaty”, Kiberneticheskii sb., 9, Mir, M., 1964, 123–141
[3] Freivald R. V., “Ob uvelichenii chisla sostoyanii pri determinizatsii konechnykh veroyatnostnykh avtomatov”, Avtomatika i vychisl. tekhnika, 1982, no. 3, 39–42 | MR
[4] Ablayev F., Karpinski M., “On the power of randomized branching programs”, Proc. ICALP' 96, LNCS, 1099, Springer, 1996, 348–356 | MR | Zbl
[5] Manin Yu. I., Vychislimoe i nevychislimoe, Sov. radio, M., 1980, 128 pp. | MR
[6] Feynman R., “Simulating physics with computers”, Int. J. Theor. Phys., 21:6–7 (1982), 467–488 | DOI | MR
[7] Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000, 700 pp. | MR | Zbl
[8] Shor P., “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”, SIAM J. Sci. Statist. Comput., 26:5 (1997), 1484–1509 | DOI | MR | Zbl
[9] Grover L., “A fast quantum mechanical algorithm for database search”, Proc. STOC' 96, ACM New York, N.Y., 1996, 212–219 | DOI | MR | Zbl
[10] Goldreich O., “On promise problem: A survey”, Shimon Even Festschrift, LNCS, 3895, eds. Goldreich O., Rosenberg A. L., Selman A. L., 2006, 254–290 | MR
[11] Ambainis A., Yakaryılmaz A., “Superiority of exact quantum automata for promise problems”, Inf. Process. Lett., 112:7 (2012), 289–291 | DOI | MR | Zbl
[12] Wegener I., Branching Programs and Binary Decision Diagrams, SIAM, 2000, 411 pp. | MR | Zbl
[13] Lee C. Y., “Representation of switching circuits by binary-decision programs”, Bell Syst. Tech. J., 38:4 (1959), 985–999 | DOI | MR
[14] Akers S. B., “Binary decision diagrams”, IEEE Trans. Comput., C-27:6 (1978), 509–516 | DOI
[15] Kuzmin V. A., “Otsenka slozhnosti realizatsii funktsii algebry logiki prosteishimi vidami binarnykh programm”, Metody diskretnogo analiza v teorii kodov i skhem, 29, In-t matematiki SO AN SSSR, Novosibirsk, 1976, 11–39 | MR
[16] Mazek W., A fast algorithm for the string editing problem and decision graph complexity, Master's Thesis, Massachusetts Institute of Techonology, 1976
[17] Cobham A., “The recognition problem for the set of perfect squares”, Proc. 7th Symposium on Switching and Automata Theory (SWAT), 1996, 78–87
[18] Pudlák P., Zak S., Space complexity of computations, Tech. Report, Math. Inst., CSAV, Prague, 1983, 30 pp.
[19] Pudlák P. A., “A Lower Bound on Complexity of Branching Program”, Proc. of the Mathematical Foundations of Computer Science, Springer-Verlag, 1984, 480–489 | MR
[20] Ablayev F., “Randomization and nondeterminism are incomparable for polynomial ordered binary decision diagrams”, Proc. of the 24th Int. Coll. on Automata, Languages, and Programming (ICALP), LNCS, 1256, 1997, 195–202 | MR
[21] Ablayev F., Karpinski M., A lower bound for integer multiplication on randomized read-once branching programs, Electronic Colloquium on Computational Complexity, Report No 11, URL: , 1998, svobodnyi http://eccc.hpi-web.de/report/1998/011/
[22] Ablayev F., Gainutdinova A., Karpinski M., “On Computational Power of Quantum Branching Programs”, Proc. 13th Int. Symposium “Fundamentals of computation theory” (FCT 2001), LNCS, 2138, Riga, Latvia, 2001, 59–70 | MR | Zbl
[23] Barrington D., “Vetvyaschiesya programmy ogranichennoi shiriny, imeyuschie polinomialnuyu slozhnost, raspoznayut v tochnosti yazyki iz $NC^1$”, Kiberneticheskii sb., 28, Mir, M., 1991, 94–113
[24] Nakanishi M., Hamaguchi K., Kashiwabara T., “Ordered quantum branching programs are more powerful than ordered probabilistic branching programs under a bounded-width restriction”, Proc. 6th Annual Int. Conf. on Computing and Combinatorics (COCOON' 2000), LNCS, 1858, Springer-Verlag, 2000, 467–476 | MR | Zbl
[25] Sauerhoff M., Sieling D., “Quantum branching programs and space-bounded nonuniform quantum complexity”, Theor. Comp. Sci., 334:1–3 (2005), 177–225 | DOI | MR | Zbl
[26] Gainutdinova A. F., “O sravnitelnoi slozhnosti kvantovykh i klassicheskikh binarnykh programm”, Diskretnaya matem., 14:3 (2002), 109–121 | DOI | MR | Zbl
[27] Geffert V., Yakaryılmaz A., “Classical automata on promise problems”, Descriptional Complexity of Formal Systems, Proc. 16th Int. Workshop (DCFS 2014), LNCS, 8614, 2014, 126–137 | Zbl
[28] Ablayev F., Gainutdinova A., Karpinski M., Moore C., Pollette C., “On the computational power of probabilistic and quantum branching program”, Information and Computation, 203:2 (2005), 145–162 | DOI | MR | Zbl
[29] Kemeny J. G., Snell J. L., Finite Markov Chains, D. Van Nostrand Comp. Inc., 1960, 210 pp. | MR | Zbl
[30] Nechiporuk E. I., “Ob odnoi bulevskoi funktsii”, Dokl. AN SSSR, 169:4 (1966), 765–766 | MR | Zbl
[31] Yao A. C., “Some Complexity Questions Related to Distributed Computing”, Proc. 11th STOC, v. 14, 1979, 209–213
[32] Wegener I., “Communication Complexity and BDD Lower Bound Techniques”, Numbers, Information and Complexity, Springer-Verlag, 2000, 615–628 | DOI | MR