Keywords: algorithm, complexity, bilinear complexity.
@article{UZKU_2014_156_3_a2,
author = {V. B. Alekseev},
title = {On bilinear complexity of multiplication of $5\times2$ matrix by $2\times2$ matrix},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {19--29},
year = {2014},
volume = {156},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a2/}
}
TY - JOUR AU - V. B. Alekseev TI - On bilinear complexity of multiplication of $5\times2$ matrix by $2\times2$ matrix JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2014 SP - 19 EP - 29 VL - 156 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a2/ LA - ru ID - UZKU_2014_156_3_a2 ER -
%0 Journal Article %A V. B. Alekseev %T On bilinear complexity of multiplication of $5\times2$ matrix by $2\times2$ matrix %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2014 %P 19-29 %V 156 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a2/ %G ru %F UZKU_2014_156_3_a2
V. B. Alekseev. On bilinear complexity of multiplication of $5\times2$ matrix by $2\times2$ matrix. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 19-29. http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a2/
[1] Strassen V., “Gaussian elimination is not optimal”, Numer. Math., 13 (1969), 354–356 ; Shtrassen V., “Algoritm Gaussa ne optimalen”, Kiberneticheskii sb., 7, Mir, M., 1970, 67–70 | DOI | MR | Zbl
[2] Coppersmith D., Winograd S., “Matrix Multiplication via Arithmetic Progressions”, J. Symbolic Computation, 9:3 (1990), 251–280 | DOI | MR | Zbl
[3] Bürgisser P., Clausen M., Shokrollahi M. A., Algebraic complexity theory, Springer, Berlin–Heidelberg, 1997, 618 pp. | MR | Zbl
[4] Waksman A., “On Winograd's algorithm for inner products”, IEEE Trans. Comput., C-19 (1970), 360–361 | DOI | MR
[5] Alekseyev V. B., “On the complexity of some algorithms of matrix multiplication”, J. Algorithms, 6:1 (1985), 71–85 | DOI | MR | Zbl
[6] Laderman J. D., “A noncommutative algorithm for multiplying $3\times3$ matrices using 23 multiplications”, Bull. Amer. Math. Soc., 82:1 (1976), 126–128 | DOI | MR | Zbl
[7] Bläser M., “On the complexity of the multiplication of matrices of small formats”, J. Complexity, 19 (2003), 43–60 | DOI | MR | Zbl
[8] Makarov O. M., “Nekommutativnyi algoritm umnozheniya kvadratnykh matrits pyatogo poryadka, ispolzuyuschii sto umnozhenii”, Zhurn. vychisl. matem. i matem. fiziki, 27:2 (1987), 311–315 | MR | Zbl
[9] Smirnov A. V., “O bilineinoi slozhnosti i prakticheskikh algoritmakh umnozheniya matrits”, Zhurn. vychisl. matem. i matem. fiziki, 53:12 (2013), 1970–1984 | DOI | MR
[10] Winograd S., “On multiplication of $2\times2$ matrices”, Linear Algebra Appl., 4 (1971), 381–388 | DOI | MR | Zbl
[11] Hopcroft J. E., Musinski J., “Duality applied to the complexity of matrix multiplication and other bilinear forms”, SIAM J. Comput., 2:3 (1973), 159–173 | DOI | MR | Zbl
[12] Hopcroft J. E., Kerr L. R., “On minimizing the number of multiplications necessary for matrix multiplication”, SIAM J. Appl. Math., 20:1 (1971), 127–148 | DOI | MR
[13] Alekseev V. B., Smirnov A. V., “O tochnoi i priblizhennoi bilineinykh slozhnostyakh umnozheniya matrits razmerov $4\times2$ i $2\times2$”, Sovremennye problemy matematiki, 17, 2013, 135–152 | DOI
[14] Bini D., Capovani M., Lotti G., Romani F., “$O(n^{2.7799})$ complexity for approximate matrix multiplication”, Inform. Process. Lett., 8:5 (1979), 234–235 | DOI | MR | Zbl
[15] Landsberg J. M., “The border rank of the multiplication of $2\times2$ matrices is seven”, J. Amer. Math. Soc., 19:2 (2006), 447–459 | DOI | MR | Zbl