On the problem of implementation of Boolean functions by generalized $\alpha$-formulas
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 116-122 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we consider the problem of implementation of Boolean functions by generalized $\alpha$-formulas. The notion of a generalized $\alpha$-formula is introduced. For a given set of Boolean functions, we define the notion of a universal set of generalized $\alpha$-formulas. We also propose the notion of dual generalized $\alpha$-formulas and formulate the principle of duality for generalized $\alpha$-formulas. The presence of universal sets of generalized $\alpha$-formulas is proved for every $n\geq2$ for the sets $T_0(n)$ and $T_1(n)$ of $0$-preserving and $1$-preserving Boolean functions of the variables $x_1,x_2,\dots,x_n$.
Keywords: Boolean function, implementation of functions by formulas.
Mots-clés : formula
@article{UZKU_2014_156_3_a11,
     author = {L. N. Sysoeva},
     title = {On the problem of implementation of {Boolean} functions by generalized $\alpha$-formulas},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {116--122},
     year = {2014},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a11/}
}
TY  - JOUR
AU  - L. N. Sysoeva
TI  - On the problem of implementation of Boolean functions by generalized $\alpha$-formulas
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 116
EP  - 122
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a11/
LA  - ru
ID  - UZKU_2014_156_3_a11
ER  - 
%0 Journal Article
%A L. N. Sysoeva
%T On the problem of implementation of Boolean functions by generalized $\alpha$-formulas
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 116-122
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a11/
%G ru
%F UZKU_2014_156_3_a11
L. N. Sysoeva. On the problem of implementation of Boolean functions by generalized $\alpha$-formulas. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 116-122. http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a11/

[1] Glukhov M. M., “Ob $\alpha$-zamknutykh klassakh i $\alpha$-polnykh sistemakh funktsii $k$-znachnoi logiki”, Diskretnaya matem., 1:1 (1989), 16–21 | MR | Zbl

[2] Chernyshev A. L., “Usloviya $\alpha$-polnoty sistem funktsii mnogoznachnoi logiki”, Diskretnaya matem., 4:4 (1992), 117–130 | MR | Zbl

[3] Shabunin A. L., “Primery $\alpha$-polnykh sistem $k$-znachnoi logiki pri $k=3,4$”, Diskretnaya matem., 18:4 (2006), 45–55 | DOI | MR | Zbl

[4] Truschin D. V., “O glubine $\alpha$-popolneniya sistem bulevykh funktsii”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhanika, 2009, no. 2, 72–75

[5] Truschin D. V., “Ob otsenkakh glubiny $\alpha$-popolnenii sistem funktsii trekhznachnoi logiki”, Problemy teoreticheskoi kibernetiki, Materialy XVI Mezhdunar. konf., Izd-vo NNGU, N. Novgorod, 2011, 484–487

[6] Yablonskii S. V., Vvedenie v diskretnuyu matematiku, Vyssh. shk., M., 2006, 384 pp. | MR

[7] A. B. Ugolnikov (Otv. red.), Konspekt lektsii O. B. Lupanova po kursu “Vvedenie v matematicheskuyu logiku”, Izd-vo TsPI pri mekh.-matem. fak. MGU imeni M. V. Lomonosova, M., 2007, 191 pp.

[8] Sysoeva L. N., “O nekotorykh svoistvakh obobschennykh $\alpha$-formul”, Vestn. Mosk. un-ta. Ser. 1. Matem. Mekhanika, 2013, no. 4, 51–55 | MR | Zbl