Universal quantum hashing
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 7-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper we propose a method of quantum hashing which mostly combines the existing constructions of universal hash families with quantum one-way functions. Next, we define the concept of a quantum hash generator and present an approach for building a large number of various quantum hash functions. The construction is based on the integration of a classical $\varepsilon$-universal hash family and a given family of functions – quantum hash generator. The proposed construction combines the properties of robust representation of information by classical error-correcting codes together with the possibility of highly reliable representation of information by quantum systems. In particular, we present a quantum hash function based on the Reed–Solomon code and prove that this construction is optimal in the sense of the number of qubits needed.
Keywords: quantum computations, quantum communications, quantum hashing.
@article{UZKU_2014_156_3_a1,
     author = {F. M. Ablayev and M. F. Ablayev and A. V. Vasilev},
     title = {Universal quantum hashing},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {7--18},
     year = {2014},
     volume = {156},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a1/}
}
TY  - JOUR
AU  - F. M. Ablayev
AU  - M. F. Ablayev
AU  - A. V. Vasilev
TI  - Universal quantum hashing
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 7
EP  - 18
VL  - 156
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a1/
LA  - ru
ID  - UZKU_2014_156_3_a1
ER  - 
%0 Journal Article
%A F. M. Ablayev
%A M. F. Ablayev
%A A. V. Vasilev
%T Universal quantum hashing
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 7-18
%V 156
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a1/
%G ru
%F UZKU_2014_156_3_a1
F. M. Ablayev; M. F. Ablayev; A. V. Vasilev. Universal quantum hashing. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 3, pp. 7-18. http://geodesic.mathdoc.fr/item/UZKU_2014_156_3_a1/

[1] Kashefi E., Kerenidis I., “Statistical Zero Knowledge and quantum one-way functions”, Theor. Comput. Sci., 378:1 (2007), 101–116 | DOI | MR | Zbl

[2] Gottesman D., Chuang I., Quantum Digital Signatures, 2001, arXiv: quant-ph/0105032

[3] Buhrman H., Cleve R., Watrous J., de Wolf R., “Quantum Fingerprinting”, Phys. Rev. Lett., 87:16 (2001), 167902, 4 pp. | DOI

[4] Lu X., Feng D., “Quantum digital signature based on quantum one-way functions”, The 7th Int. Conf. on Advanced Communication Technology (ICACT' 2005), v. 1, 2005, 514–517

[5] Zhou J., Zhou Y., Niu X., Xian Y., “Quantum proxy signature scheme with public verifiability”, Science China Physics, Mechanics and Astronomy, 54:10 (2011), 1828–1832 | DOI

[6] Ablayev F., Vasiliev A., “Algorithms for Quantum Branching Programs Based on Fingerprinting”, Electr. Proc. in Theor. Comput. Sci., 9 (2009), 1–11 | DOI

[7] Razborov A. A., Szemeredi E., Wigderson A., “Constructing Small Sets that are Uniform in Arithmetic Progressions”, Combinatorics, Probability Computing, 2 (1993), 513–518 | DOI | MR | Zbl

[8] Ablayev F., Vasiliev A., “On the Computation of Boolean Functions by Quantum Branching Programs via Fingerprinting”, Electronic Colloquium on Computational Complexity (ECCC), 15 (2008), Art. 059, svobodnyi URL: http://www.eccc.uni-trier.de/report/2008/059/

[9] Stinson D. R., “On the Connections between Universal Hashing, Combinatorial Designs and Error-Correcting Codes”, Twenty-fifth Manitoba Conference on Combinatorial Mathematics and Computing, Congressus Numerantium, 114, 1996, 7–27 | MR | Zbl

[10] Bierbrauer J., Johansson T., Kabatianskii G., Smeets B., “On Families of Hash Functions via Geometric Codes and Concatenation”, Advances in Cryptology – CRYPTO' 93, ed. D. R. Stinson, Springer, Berlin–Heidelberg, 1994, 331–342 | DOI | MR | Zbl