Keywords: Kirchhoff–Love model, Voigt–Thompson–Kelvin model, acoustic insulation, wave equation, numerical method, experimental and theoretical investigations.
@article{UZKU_2014_156_2_a9,
author = {V. N. Paimushin and R. K. Gazizullin and A. A. Sharapov},
title = {Mathematical modeling and experimental investigation of sound wave propagation through a~deformable plate placed between two chambers},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {102--119},
year = {2014},
volume = {156},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a9/}
}
TY - JOUR AU - V. N. Paimushin AU - R. K. Gazizullin AU - A. A. Sharapov TI - Mathematical modeling and experimental investigation of sound wave propagation through a deformable plate placed between two chambers JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2014 SP - 102 EP - 119 VL - 156 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a9/ LA - ru ID - UZKU_2014_156_2_a9 ER -
%0 Journal Article %A V. N. Paimushin %A R. K. Gazizullin %A A. A. Sharapov %T Mathematical modeling and experimental investigation of sound wave propagation through a deformable plate placed between two chambers %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2014 %P 102-119 %V 156 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a9/ %G ru %F UZKU_2014_156_2_a9
V. N. Paimushin; R. K. Gazizullin; A. A. Sharapov. Mathematical modeling and experimental investigation of sound wave propagation through a deformable plate placed between two chambers. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 2, pp. 102-119. http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a9/
[1] Zaschita ot shuma, SP 51.13330.2011. Aktualizirovannaya red. SNiP 23-03-2003, M., 2011, 46 pp.
[2] Paimushin V. N., Gazizullin R. K., “Issledovanie zvukoizolyatsionnykh svoistv absolyutno zhestkoi plastiny, pomeschennoi na deformiruemykh opornykh elementakh mezhdu dvumya pregradami”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 3, 2013, 126–141
[3] Panovko Ya. G., Vnutrennee trenie pri kolebaniyakh uprugikh sistem, Fizmatgiz, M., 1960, 193 pp.
[4] Khilchevskii V. V., Dubenets V. G., Rasseyanie energii pri kolebaniyakh tonkostennykh elementov konstruktsii, Vischa shk., Kiev, 1977, 252 pp. | MR
[5] Vakhitov M. B., “Integriruyuschie matritsy – apparat chislennogo resheniya differentsialnykh uravnenii stroitelnoi mekhaniki”, Izv. vuzov. Aviats. tekhnika, 1966, no. 3, 50–61
[6] Dautov R. Z., Paimushin V. N., “O metode integriruyuschikh matrits resheniya kraevykh zadach dlya obyknovennykh uravnenii chetvertogo poryadka”, Izv. vuzov. Matem., 1996, no. 10, 13–25 | MR | Zbl
[7] Paimushin V. N., “O zadachakh izlucheniya zvukovoi volny pri dinamicheskom protsesse deformirovaniya plastin s uchetom vneshnego i vnutrennego dempfirovaniya”, Matem. metodi ta fiz.-mekh. polya, 56:2 (2013), 72–85 | MR
[8] Igumnov L. A., Lokteva N. A., Paimushin V. N., Tarlakovskii D. V., “Zvukoizolyatsionnye svoistva odnomernoi trekhsloinoi plastiny”, Matem. metodi ta fiz.-mekh. polya, 56:2 (2013), 86–93 | MR