Liquid jet impact on an elastic-plastic body
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 2, pp. 72-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The dynamics of the subsurface layer of a body made of nickel alloy has been studied for the case when the body surface is exposed to a load represented by a pulse action of a liquid microjet arising from collapse of an attached-to-the-body cavitation bubble in water. The velocity range in which the stress intensity in the body briefly attains the level of the yield strength has been considered. The mathematical model of an elastic-plastic body and the fundamentals of the numerical technique used in the study are given. It is shown that due to the extension of the loading domain on the body surface, the non-uniformity of the load and the abrupt decrease of the load at the edge of the loading domain, the stress intensity limit in the body is reached at the considerably (nearly two times) lesser jet velocities than in the corresponding one-dimensional approximation. The non-uniformity of the load does not lead to qualitative changes in the body dynamics; its influence decreases with an increase in the jet velocity.
Keywords: cavitation damage, elastic-plastic body.
Mots-clés : cavitation erosion, jet impact
@article{UZKU_2014_156_2_a6,
     author = {A. A. Aganin and N. A. Khismatullina},
     title = {Liquid jet impact on an elastic-plastic body},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {72--86},
     year = {2014},
     volume = {156},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a6/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - N. A. Khismatullina
TI  - Liquid jet impact on an elastic-plastic body
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 72
EP  - 86
VL  - 156
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a6/
LA  - ru
ID  - UZKU_2014_156_2_a6
ER  - 
%0 Journal Article
%A A. A. Aganin
%A N. A. Khismatullina
%T Liquid jet impact on an elastic-plastic body
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 72-86
%V 156
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a6/
%G ru
%F UZKU_2014_156_2_a6
A. A. Aganin; N. A. Khismatullina. Liquid jet impact on an elastic-plastic body. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 2, pp. 72-86. http://geodesic.mathdoc.fr/item/UZKU_2014_156_2_a6/

[1] Preece C. V., Brunton J. H., “A comparison of liquid impact erosion and cavitation erosion”, Wear, 60:2 (1980), 269–284 | DOI

[2] K. Pris (red.), Eroziya, Mir, M., 1982, 464 pp.

[3] Haller K. K., Ventikos Y., Poulikakos D., Monkewitz P., “Computational study of high-speed liquid droplet impact”, J. Appl. Phys., 92:5 (2002), 2821–2828 | DOI

[4] Chizhov A. V., Shmidt A. A., “Vysokoskorostnoi udar kapli o pregradu”, Zhurn. tekhn. fiziki, 70:12 (2000), 18–27

[5] Obreschkow D., Dorsaz N., Kobel P., de Bosset A., Tinguely M., Field J., Farha M., “Confined shocks inside isolated liquid volumes: A new path of erosion?”, Phys. Fluids, 23:10 (2011), 101702, 4 pp. | DOI

[6] Reboud J. L., Guelin P., “Impact response of an elastoplastic medium”, Mech. Res. Commun., 15:4 (1988), 253–260 | DOI

[7] Kennedy C. F., Field J. E., “Damage threshold velocities for liquid impact”, J. Mater. Sci., 35:21 (2000), 5331–5339 | DOI

[8] Field J. E., Camus J.-J., Tinguely M., Obreschkow D., Farhat M., “Cavitation in impacted drops and jets and the effect on erosion damage thresholds”, Wear, 290–291 (2012), 154–160 | DOI

[9] Sanada T., Ando K., Colonius T., “A computational study of high-speed droplet impact”, Fluid Dynam. Mater. Process, 7:4 (2011), 329–340

[10] Petushkov V. A., “Chislennye issledovaniya nelineinykh volnovykh protsessov v zhidkosti i deformiruemom tele pri vysokoskorostnom udarnom vozdeistvii”, Prikl. mekhanika i tekhn. fizika, 1991, no. 2, 134–143

[11] Li N., Zhou Q., Chen X., Xu T., Hui Sh., Zhang D., “Liquid drop impact on solid surface with application to water drop erosion on turbine blades, Part I: Nonlinear wave model and solution of one-dimensional impact”, Int. J. Mech. Sci., 50:10–11 (2008), 1526–1542 | Zbl

[12] Adler W. F., “Waterdrop impact modeling”, Wear, 186–187, Pt. 2 (1995), 341–351 | DOI

[13] Hill D. J., Pullin D., Ortiz M., Meiron D., “An Eulerian hybrid WENO centered-difference solver for elastic-plastic solids”, J. Comp. Phys., 229:24 (2010), 9053–9072 | DOI | MR | Zbl

[14] Aganin A. A., Ilgamov M. A., Khalitova T. F., “Udarnoe vozdeistvie strui na zhestkuyu stenku”, Aktualnye problemy mekhaniki sploshnoi sredy, K 20-letiyu IMM KazNTs RAN, v. 1, Foliant, Kazan, 2011, 134–145

[15] Aganin A. A., Ilgamov M. A., Kosolapova L. A., Malakhov V. G., “Skhlopyvanie kavitatsionnogo puzyrka v zhidkosti vblizi tverdoi stenki”, Vestn. Bashk. un-ta, 18:1 (2013), 15–21

[16] Lesser M. B., “Analytic solutions of liquid-drop impact problems”, Proc. R. Soc. Lond. A, 377:1770 (1981), 289–308 | DOI | MR

[17] Nicolici S., Prisecaru I., Ghitescu P., “Study of fluid-structure interaction in liquid droplet impingement phenomena”, U. P. B. Sci. Bull. Ser. D, 74:1 (2012), 147–154

[18] Uilkins M. L., “Raschet uprugoplasticheskikh techenii”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967, 212–263

[19] Ilgamov M. A., Gilmanov A. N., Neotrazhayuschie usloviya na granitsakh raschetnoi oblasti, FIZMATLIT, M., 2003, 240 pp. | MR | Zbl

[20] Aganin A. A., Malakhov V. G., Khalitova T. F., Khismatullina N. A., “Raschet silovogo vozdeistviya kavitatsionnogo puzyrka na uprugoe telo”, Vestn. Tat. gos. gumanit.-ped. un-ta, 2010, no. 4(22), 6–13

[21] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR