Normal connections on three-dimensional homogeneous spaces with a non-solvable transformation group. II. A solvable stabilizer
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 1, pp. 51-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we present a complete local classification of three-dimensional homogeneous spaces admitting normal connection. We consider only the case of a non-solvable Lie group of transformations with a solvable stabilizer. The local classification of homogeneous spaces is equivalent to the description of effective pairs of Lie algebras. We describe all invariant affine connections on those homogeneous spaces together with their curvature and torsion tensors. We study the holonomy algebras of homogeneous spaces and find when the invariant connection is normal. We use an algebraic approach for describing the connections as well as methods of the theories of Lie groups, Lie algebras and homogeneous spaces.
Keywords: normal connection, homogeneous space, holonomy algebra.
Mots-clés : transformation group
@article{UZKU_2014_156_1_a5,
     author = {N. P. Mozhei},
     title = {Normal connections on three-dimensional homogeneous spaces with a~non-solvable transformation {group.~II.} {A~solvable} stabilizer},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {51--69},
     year = {2014},
     volume = {156},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a5/}
}
TY  - JOUR
AU  - N. P. Mozhei
TI  - Normal connections on three-dimensional homogeneous spaces with a non-solvable transformation group. II. A solvable stabilizer
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 51
EP  - 69
VL  - 156
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a5/
LA  - ru
ID  - UZKU_2014_156_1_a5
ER  - 
%0 Journal Article
%A N. P. Mozhei
%T Normal connections on three-dimensional homogeneous spaces with a non-solvable transformation group. II. A solvable stabilizer
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 51-69
%V 156
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a5/
%G ru
%F UZKU_2014_156_1_a5
N. P. Mozhei. Normal connections on three-dimensional homogeneous spaces with a non-solvable transformation group. II. A solvable stabilizer. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 1, pp. 51-69. http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a5/

[1] Kartan E., Rimanova geometriya v ortogonalnom repere, Po lektsiyam E. Kartana, chitannym v Sorbonne v 1926–1927 gg., per., obr. i red. S. P. Finikova, Mosk. gos. un-t, M., 1960, 307 pp. | MR

[2] Nomizu K., “Uniqueness of the normal connections and congruence of isometric immersions”, Tohoku Math. J., 28:1 (1976), 613–617 | DOI | MR | Zbl

[3] Kim Sen En, Morozov V. V., “Ob imprimitivnykh gruppakh trekhmernogo kompleksnogo prostranstva”, Uchen. zap. Kazan. un-ta, 115, no. 14, 1955, 69–85 | MR

[4] Mozhei N. P., “Normalnye svyaznosti na trekhmernykh odnorodnykh prostranstvakh s nerazreshimoi gruppoi preobrazovanii. I. Nerazreshimyi stabilizator”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 4, 2013, 61–76

[5] Onischik A. L., Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995, 384 pp. | MR

[6] Komrakov B., Tchourioumov A., Mozhey N. et al., Three-dimensional isotropically-faithful homogeneous spaces, v. 1–3, Preprint series. Institute of Mathematics. University of Oslo. Pure mathematics, 35–37, Inst., Univ., Oslo, 1993

[7] Nomizu K., “Invariant affine connections on homogeneous spaces”, Amer. J. Math., 76:1 (1954), 33–65 | DOI | MR | Zbl