On the exit out of the Gakhov set controlled by the subordination conditions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 1, pp. 31-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A Gakhov set $\mathcal G$ is the class of all holomorphic and locally univalent functions in the unit disk, which have no more than one root of the Gakhov equation. For the series of the well-known subclasses of univalent functions having the zero root of the Gakhov equation, an effective desription is given for the set of all trajectories of the exit out of $\mathcal G$; such an exit takes place when the parameter value corresponds to the sharp constant in the appropriate uniqueness condition of the root. It is shown that the exit out of $\mathcal G$ may occur due to the bifurcations of the two following types only: 1) the maximum at zero splits into two maxima and the saddle; 2) the non-zero semisaddle appears and then divides into the maximum and the saddle.
Keywords: hyperbolic derivative, conformal (inner mapping) radius, bifurcations of critical points, Gakhov set, class of starlike functions
Mots-clés : subordination conditions.
@article{UZKU_2014_156_1_a3,
     author = {A. V. Kazantsev},
     title = {On the exit out of the {Gakhov} set controlled by the subordination conditions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {31--43},
     year = {2014},
     volume = {156},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - On the exit out of the Gakhov set controlled by the subordination conditions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2014
SP  - 31
EP  - 43
VL  - 156
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/
LA  - ru
ID  - UZKU_2014_156_1_a3
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T On the exit out of the Gakhov set controlled by the subordination conditions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2014
%P 31-43
%V 156
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/
%G ru
%F UZKU_2014_156_1_a3
A. V. Kazantsev. On the exit out of the Gakhov set controlled by the subordination conditions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/

[1] Polia G., Segë G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978, 432 pp.

[2] Haegi H. R. Extremalprobleme und Ungleichungen konformer Gebietsgrössen, Compositio Math., 8:2 (1950), 81–111 | MR | Zbl

[3] Kazantsev A. V., “On a problem of Polya and Szegö”, Lobachevskii J. Math., 9 (2001), 37–46 | MR | Zbl

[4] Gakhov F. D., “Ob obratnykh kraevykh zadachakh”, Dokl. AN SSSR, 86:4 (1952), 649–652 | Zbl

[5] Kazantsev A. V., “Giperbolicheskie proizvodnye s predshvartsianami iz prostranstva Blokha”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 14, Kazan. matem. o-vo, Kazan, 2002, 135–144 | MR | Zbl

[6] Kazantsev A. V., “Bifurkatsii i novye usloviya edinstvennosti kriticheskikh tochek giperbolicheskikh proizvodnykh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 180–194 | MR | Zbl

[7] Peschl E. Über die Werwendung von, “Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Tipus”, Ann. Acad. Sci. Fenn. Ser. AI Math., 336:6 (1963), 1–22 | MR

[8] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180 (1982), 91–106 | DOI | MR

[9] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matem., 1984, no. 2, 3–11 | MR | Zbl

[10] Aksentev L. A., Kinder M. I., Sagitova S. B., “Razreshimost vneshnei obratnoi kraevoi zadachi v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 20, Kazan. un-t, Kazan, 1983, 22–34 | MR | Zbl

[11] Aksentev L. A., Kazantsev A. V., Kiselev A. V., “O edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Izv. vuzov. Matem., 1984, no. 10, 8–18 | MR | Zbl

[12] Aksentev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “O klassakh edinstvennosti vneshnei obratnoi kraevoi zadachi”, Trudy seminara po kraevym zadacham, 24, Kazan. un-t, Kazan, 1990, 39–62 | MR

[13] Aksentev L. A., Kazantsev A. V., “Novoe svoistvo klassa Nekhari i ego primenenie”, Trudy seminara po kraevym zadacham, 25, Kazan. un-t, Kazan, 1990, 33–51 | MR | Zbl

[14] Kinder M. I., “Issledovanie uravneniya F. D. Gakhova v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 22, Kazan. un-t, Kazan, 1985, 104–116 | MR | Zbl

[15] Kazantsev A. V., Chetyre etyuda na temu F. D. Gakhova, Uchebnoe posobie, Mar. un-t, Ioshkar-Ola, 2012, 64 pp.

[16] Kazantsev A. V., “Mnozhestvo Gakhova v prostranstve Khornicha pri blokhovskikh ogranicheniyakh na predshvartsiany”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, 2013, 65–82

[17] Nehari Z., “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl

[18] Gehring F. W., Pommerenke Ch., “On the Nehari univalence criterion and quasicircles”, Comment. Math. Helv., 59 (1984), 226–242 | DOI | MR | Zbl

[19] Alexander J. W., “Functions which map the interior of the unit circle upon simple regions”, Ann. of Math. Ser. 2, 17:1 (1915), 12–22 | DOI | MR | Zbl

[20] Kazantsev A. V., “O vnutrennem radiuse dlya beskonechnykh oblastei”, Trudy seminara po kraevym zadacham, 27, Kazan. un-t, Kazan, 1992, 63–67 | MR | Zbl

[21] Kazantsev A. V., Ekstremalnye svoistva vnutrennikh radiusov i ikh prilozheniya, Dis. $\dots$ kand. fiz.-matem. nauk, Kazan, 1990, 145 pp.

[22] Kazantsev A. V., “Bifurkatsii kornei uravneniya Gakhova s levnerovskoi levoi chastyu”, Izv. vuzov. Matem., 1993, no. 6, 69–73 | MR | Zbl

[23] Kazantsev A. V., “Parametric families of inner mapping radii”, 2nd European Congr. Math., Abstracts (Budapest, July 22–26, 1996), János Bolyai Math. Soc., Budapest, 1996, 30

[24] Kazantsev A. V., Popov N. I., “O nekotorykh zadachakh, svyazannykh s funktsionalami izoperimetricheskogo tipa”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 14, Kazan. matem. o-vo, Kazan, 2002, 144–157 | MR | Zbl

[25] Zharkova T. V., Kazantsev A. V., “O edinstvennosti resheniya uravneniya Gakhova dlya funktsii iz klassov Yanovskogo”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2013, no. 2, 108–119

[26] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl

[27] Jack I. S., “Functions starlike and convex of order $\alpha$”, J. London Math. Soc. Ser. 2, 3:3 (1971), 469–474 | DOI | MR | Zbl

[28] Aksentev L. A., Kazantsev A. V., Popov N. I., “O teoremakh edinstvennosti dlya vneshnei obratnoi kraevoi zadachi v podklassakh odnolistnykh funktsii”, Izv. vuzov. Matem., 1998, no. 8, 3–13 | MR | Zbl

[29] Zharkova T. V., Kazantsev A. V., “O metode podchinennosti v probleme edinstvennosti kornya uravneniya Gakhova”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 4, Kazan. matem. o-vo, Kazan, 2013, 189–190