Mots-clés : subordination conditions.
@article{UZKU_2014_156_1_a3,
author = {A. V. Kazantsev},
title = {On the exit out of the {Gakhov} set controlled by the subordination conditions},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {31--43},
year = {2014},
volume = {156},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/}
}
TY - JOUR AU - A. V. Kazantsev TI - On the exit out of the Gakhov set controlled by the subordination conditions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2014 SP - 31 EP - 43 VL - 156 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/ LA - ru ID - UZKU_2014_156_1_a3 ER -
%0 Journal Article %A A. V. Kazantsev %T On the exit out of the Gakhov set controlled by the subordination conditions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2014 %P 31-43 %V 156 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/ %G ru %F UZKU_2014_156_1_a3
A. V. Kazantsev. On the exit out of the Gakhov set controlled by the subordination conditions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 156 (2014) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/UZKU_2014_156_1_a3/
[1] Polia G., Segë G., Zadachi i teoremy iz analiza, Ch. 2, Nauka, M., 1978, 432 pp.
[2] Haegi H. R. Extremalprobleme und Ungleichungen konformer Gebietsgrössen, Compositio Math., 8:2 (1950), 81–111 | MR | Zbl
[3] Kazantsev A. V., “On a problem of Polya and Szegö”, Lobachevskii J. Math., 9 (2001), 37–46 | MR | Zbl
[4] Gakhov F. D., “Ob obratnykh kraevykh zadachakh”, Dokl. AN SSSR, 86:4 (1952), 649–652 | Zbl
[5] Kazantsev A. V., “Giperbolicheskie proizvodnye s predshvartsianami iz prostranstva Blokha”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 14, Kazan. matem. o-vo, Kazan, 2002, 135–144 | MR | Zbl
[6] Kazantsev A. V., “Bifurkatsii i novye usloviya edinstvennosti kriticheskikh tochek giperbolicheskikh proizvodnykh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 180–194 | MR | Zbl
[7] Peschl E. Über die Werwendung von, “Differentialinvarianten bei gewissen Funktionenfamilien und die Übertragung einer darauf gegründeten Methode auf partielle Differentialgleichungen vom elliptischen Tipus”, Ann. Acad. Sci. Fenn. Ser. AI Math., 336:6 (1963), 1–22 | MR
[8] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180 (1982), 91–106 | DOI | MR
[9] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matem., 1984, no. 2, 3–11 | MR | Zbl
[10] Aksentev L. A., Kinder M. I., Sagitova S. B., “Razreshimost vneshnei obratnoi kraevoi zadachi v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 20, Kazan. un-t, Kazan, 1983, 22–34 | MR | Zbl
[11] Aksentev L. A., Kazantsev A. V., Kiselev A. V., “O edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Izv. vuzov. Matem., 1984, no. 10, 8–18 | MR | Zbl
[12] Aksentev L. A., Kazantsev A. V., Kinder M. I., Kiselev A. V., “O klassakh edinstvennosti vneshnei obratnoi kraevoi zadachi”, Trudy seminara po kraevym zadacham, 24, Kazan. un-t, Kazan, 1990, 39–62 | MR
[13] Aksentev L. A., Kazantsev A. V., “Novoe svoistvo klassa Nekhari i ego primenenie”, Trudy seminara po kraevym zadacham, 25, Kazan. un-t, Kazan, 1990, 33–51 | MR | Zbl
[14] Kinder M. I., “Issledovanie uravneniya F. D. Gakhova v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 22, Kazan. un-t, Kazan, 1985, 104–116 | MR | Zbl
[15] Kazantsev A. V., Chetyre etyuda na temu F. D. Gakhova, Uchebnoe posobie, Mar. un-t, Ioshkar-Ola, 2012, 64 pp.
[16] Kazantsev A. V., “Mnozhestvo Gakhova v prostranstve Khornicha pri blokhovskikh ogranicheniyakh na predshvartsiany”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, 2013, 65–82
[17] Nehari Z., “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | MR | Zbl
[18] Gehring F. W., Pommerenke Ch., “On the Nehari univalence criterion and quasicircles”, Comment. Math. Helv., 59 (1984), 226–242 | DOI | MR | Zbl
[19] Alexander J. W., “Functions which map the interior of the unit circle upon simple regions”, Ann. of Math. Ser. 2, 17:1 (1915), 12–22 | DOI | MR | Zbl
[20] Kazantsev A. V., “O vnutrennem radiuse dlya beskonechnykh oblastei”, Trudy seminara po kraevym zadacham, 27, Kazan. un-t, Kazan, 1992, 63–67 | MR | Zbl
[21] Kazantsev A. V., Ekstremalnye svoistva vnutrennikh radiusov i ikh prilozheniya, Dis. $\dots$ kand. fiz.-matem. nauk, Kazan, 1990, 145 pp.
[22] Kazantsev A. V., “Bifurkatsii kornei uravneniya Gakhova s levnerovskoi levoi chastyu”, Izv. vuzov. Matem., 1993, no. 6, 69–73 | MR | Zbl
[23] Kazantsev A. V., “Parametric families of inner mapping radii”, 2nd European Congr. Math., Abstracts (Budapest, July 22–26, 1996), János Bolyai Math. Soc., Budapest, 1996, 30
[24] Kazantsev A. V., Popov N. I., “O nekotorykh zadachakh, svyazannykh s funktsionalami izoperimetricheskogo tipa”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 14, Kazan. matem. o-vo, Kazan, 2002, 144–157 | MR | Zbl
[25] Zharkova T. V., Kazantsev A. V., “O edinstvennosti resheniya uravneniya Gakhova dlya funktsii iz klassov Yanovskogo”, Izv. vuzov. Povolzhskii region. Fiz.-matem. nauki, 2013, no. 2, 108–119
[26] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl
[27] Jack I. S., “Functions starlike and convex of order $\alpha$”, J. London Math. Soc. Ser. 2, 3:3 (1971), 469–474 | DOI | MR | Zbl
[28] Aksentev L. A., Kazantsev A. V., Popov N. I., “O teoremakh edinstvennosti dlya vneshnei obratnoi kraevoi zadachi v podklassakh odnolistnykh funktsii”, Izv. vuzov. Matem., 1998, no. 8, 3–13 | MR | Zbl
[29] Zharkova T. V., Kazantsev A. V., “O metode podchinennosti v probleme edinstvennosti kornya uravneniya Gakhova”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 4, Kazan. matem. o-vo, Kazan, 2013, 189–190