Solvability conditions in quadratures of two Volterra equations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 90-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In terms of the coefficients of Volterra integral equations, sufficient conditions for their explicit solvability are derived. The conditions are obtained by the reduction of the initial equations to various versions of the Goursat problem for equations of second order. This makes it possible to use the known solutions to the Goursat problems in quadratures.
Mots-clés : Volterra equation, Goursat problem, solution in quadratures.
Keywords: Riemann function
@article{UZKU_2013_155_4_a8,
     author = {I. M. Shakirova},
     title = {Solvability conditions in quadratures of two {Volterra} equations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {90--98},
     year = {2013},
     volume = {155},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a8/}
}
TY  - JOUR
AU  - I. M. Shakirova
TI  - Solvability conditions in quadratures of two Volterra equations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 90
EP  - 98
VL  - 155
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a8/
LA  - ru
ID  - UZKU_2013_155_4_a8
ER  - 
%0 Journal Article
%A I. M. Shakirova
%T Solvability conditions in quadratures of two Volterra equations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 90-98
%V 155
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a8/
%G ru
%F UZKU_2013_155_4_a8
I. M. Shakirova. Solvability conditions in quadratures of two Volterra equations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 90-98. http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a8/

[1] Polyanin A. D., Manzhirov A. V., Spravochnik po integralnym uravneniyam, Fizmatlit, M., 2003, 608 pp. | Zbl

[2] Vekua I. N., Novye metody resheniya ellipticheskikh uravnenii, Gos. izd-vo tekhn.-teoret. lit., M.–L., 1948, 296 pp. | MR

[3] Myuntts G., Integralnye uravneniya. Chast 1. Lineinye uravneniya Volterra, Gos. tekhn.-teoret. izd-vo, M.–L., 1934, 330 pp.

[4] Bitsadze A. V., Uravneniya matematicheskoi fiziki, Nauka, M., 1982, 336 pp. | MR

[5] Zhegalov V. I., Mironov A. N., Differentsialnye uravneniya so starshim chastnymi proizvodnymi, Kazan. matem. o-vo, Kazan, 2001, 226 pp.

[6] Zhegalov V. I., “K sluchayam razreshimosti giperbolicheskikh uravnenii v terminakh spetsialnykh funktsii”, Neklassicheskie uravneniya matem. fiziki, In-t matem. SO RAN, Novosibirsk, 2002, 73–79 | Zbl

[7] Zhegalov V. I., Sarvarova I. M., “K usloviyam razreshimosti zadachi Gursa v kvadraturakh”, Izv. vuzov. Matem., 2013, no. 3, 68–73 | Zbl