Integral estimates for infinite products of Riesz type
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 55-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we prove Brennan's conjecture for a conformal mapping $f$ in the case when the ratio $1/f'(z)$ can be represented in the form of some infinite Riesz products.
Mots-clés : Brennan's conjecture
Keywords: spectrum of integral averages.
@article{UZKU_2013_155_4_a5,
     author = {F. D. Kayumov},
     title = {Integral estimates for infinite products of {Riesz} type},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {55--60},
     year = {2013},
     volume = {155},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a5/}
}
TY  - JOUR
AU  - F. D. Kayumov
TI  - Integral estimates for infinite products of Riesz type
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 55
EP  - 60
VL  - 155
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a5/
LA  - ru
ID  - UZKU_2013_155_4_a5
ER  - 
%0 Journal Article
%A F. D. Kayumov
%T Integral estimates for infinite products of Riesz type
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 55-60
%V 155
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a5/
%G ru
%F UZKU_2013_155_4_a5
F. D. Kayumov. Integral estimates for infinite products of Riesz type. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 55-60. http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a5/

[1] Carleson L., Makarov N. G., “Some results connected with Brennan's conjecture”, Ark. Mat., 32:1 (1994), 33–62 | DOI | MR | Zbl

[2] Baranski K., Volberg A., Zdunik A., “Brennan's conjecture and the Mandelbrot set”, Int. Math. Res. Notices, 1998, no. 12, 589–600 | DOI | MR | Zbl

[3] Bertilsson D., On Brennan's conjecture in conformal mapping, Doct. Thesis, Stockholm, Sweden, 1999, 110 pp., svobodnyi URL: http://www.diva-portal.org/smash/get/diva2:8593/FULLTEXT01.pdf | MR

[4] Kayumov I. R., “O gipoteze Brennana dlya spetsialnogo klassa funktsii”, Matem. zametki, 78:4 (2005), 537–541 | DOI | MR | Zbl

[5] Kayumov I. R., Integral means and the law of iterated logarithm, Preprint No 8, Institut Mittag-Leffler, Djursholm, Sweden, 2002, 11 pp.

[6] Kayumov I. R., Integralnye kharakteristiki konformnykh otobrazhenii, Dis. $\dots$ d-ra fiz.-matem. nauk, Kazan, 2006, 221 pp.

[7] Kayumov I. R., “Granichnoe povedenie analiticheskikh proizvedenii Rissa v kruge”, Matem. trudy, 9:1 (2006), 34–51 | MR | Zbl

[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 628 pp. | MR | Zbl