Keywords: monotone operator, nonlocal operator, explicit difference scheme, stability
@article{UZKU_2013_155_4_a2,
author = {O. V. Glazyrina and M. F. Pavlova},
title = {Research on the convergence of an explicit difference scheme for a~parabolic equation with a~nonlinear nonlocal spatial operator},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {24--39},
year = {2013},
volume = {155},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/}
}
TY - JOUR AU - O. V. Glazyrina AU - M. F. Pavlova TI - Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 24 EP - 39 VL - 155 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/ LA - ru ID - UZKU_2013_155_4_a2 ER -
%0 Journal Article %A O. V. Glazyrina %A M. F. Pavlova %T Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 24-39 %V 155 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/ %G ru %F UZKU_2013_155_4_a2
O. V. Glazyrina; M. F. Pavlova. Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 24-39. http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/
[1] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Usp. matem nauk, 23:1 (1968), 45–90 | MR | Zbl
[2] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sbornik, 67(109):4 (1965), 609–642 | MR | Zbl
[3] Raviart P. A., “Sur la résolution de certaines équations paraboliques non linéaires”, J. Funct. Anal., 5:2 (1970), 299–328 | DOI | MR | Zbl
[4] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:8 (1983), 311–341 | MR | Zbl
[5] Otto F., “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differ. Equations, 131:1 (1996), 20–38 | DOI | MR | Zbl
[6] Fedotov E. M., “Ob odnom klasse dvukhsloinykh nelineinykh operatorno-raznostnykh skhem s vesami”, Izv. vuzov. Matem., 1995, no. 4, 96–103 | MR | Zbl
[7] Maslovskaya L. V., “O skhodimosti raznostnykh metodov dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh uravnenii parabolicheskogo tipa”, Zhurn. vychisl. matem. i matem. fiz., 12:6 (1972), 1444–1455 | MR | Zbl
[8] Maiorova M. E., Pavlova M. F., “Skhodimost yavnykh raznostnykh skhem dlya odnogo variatsionnogo neravenstva teorii nelineinoi nestatsionarnoi filtratsii”, Izv. vuzov. Matem., 1997, no. 7, 49–60 | MR | Zbl
[9] Chipot M., Molinet L., “Asymptotic behavior of some nonlocal diffusion problems”, Appl. Anal., 80:3–4 (2001), 279–315 | MR | Zbl
[10] Chipot M., Lovat B., “Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems”, Dynam. Cont. Dis. Ser. A, 8:1 (2001), 35–51 | MR | Zbl
[11] Pavlova M. F., “On the solvability of nonlocal nonstationary problems with double degeneration”, Differ. Equations, 47:8 (2011), 1161–1175 | DOI | MR | Zbl
[12] Glazyrina O. V., Pavlova M. F., “The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient”, Russ. Math. (Iz. VUZ), 56:3 (2012), 83–86 | MR | Zbl
[13] Gaevskii Kh., Greger K., Zakhareas K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR