Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 24-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the first boundary value problem for a parabolic equation with a spatial operator degenerating with respect to the gradient. This operator also depends on the integral characteristic of the solution. We prove the convergence theorem for an explicit difference scheme under minimal assumptions on the smoothness of the initial data.
Mots-clés : parabolic equations, convergence.
Keywords: monotone operator, nonlocal operator, explicit difference scheme, stability
@article{UZKU_2013_155_4_a2,
     author = {O. V. Glazyrina and M. F. Pavlova},
     title = {Research on the convergence of an explicit difference scheme for a~parabolic equation with a~nonlinear nonlocal spatial operator},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {24--39},
     year = {2013},
     volume = {155},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/}
}
TY  - JOUR
AU  - O. V. Glazyrina
AU  - M. F. Pavlova
TI  - Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 24
EP  - 39
VL  - 155
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/
LA  - ru
ID  - UZKU_2013_155_4_a2
ER  - 
%0 Journal Article
%A O. V. Glazyrina
%A M. F. Pavlova
%T Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 24-39
%V 155
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/
%G ru
%F UZKU_2013_155_4_a2
O. V. Glazyrina; M. F. Pavlova. Research on the convergence of an explicit difference scheme for a parabolic equation with a nonlinear nonlocal spatial operator. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 24-39. http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a2/

[1] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Usp. matem nauk, 23:1 (1968), 45–90 | MR | Zbl

[2] Dubinskii Yu. A., “Slabaya skhodimost v nelineinykh ellipticheskikh i parabolicheskikh uravneniyakh”, Matem. sbornik, 67(109):4 (1965), 609–642 | MR | Zbl

[3] Raviart P. A., “Sur la résolution de certaines équations paraboliques non linéaires”, J. Funct. Anal., 5:2 (1970), 299–328 | DOI | MR | Zbl

[4] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183:8 (1983), 311–341 | MR | Zbl

[5] Otto F., “$L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations”, J. Differ. Equations, 131:1 (1996), 20–38 | DOI | MR | Zbl

[6] Fedotov E. M., “Ob odnom klasse dvukhsloinykh nelineinykh operatorno-raznostnykh skhem s vesami”, Izv. vuzov. Matem., 1995, no. 4, 96–103 | MR | Zbl

[7] Maslovskaya L. V., “O skhodimosti raznostnykh metodov dlya nekotorykh vyrozhdayuschikhsya kvazilineinykh uravnenii parabolicheskogo tipa”, Zhurn. vychisl. matem. i matem. fiz., 12:6 (1972), 1444–1455 | MR | Zbl

[8] Maiorova M. E., Pavlova M. F., “Skhodimost yavnykh raznostnykh skhem dlya odnogo variatsionnogo neravenstva teorii nelineinoi nestatsionarnoi filtratsii”, Izv. vuzov. Matem., 1997, no. 7, 49–60 | MR | Zbl

[9] Chipot M., Molinet L., “Asymptotic behavior of some nonlocal diffusion problems”, Appl. Anal., 80:3–4 (2001), 279–315 | MR | Zbl

[10] Chipot M., Lovat B., “Existence and uniqueness results for a class of nonlocal elliptic and parabolic problems”, Dynam. Cont. Dis. Ser. A, 8:1 (2001), 35–51 | MR | Zbl

[11] Pavlova M. F., “On the solvability of nonlocal nonstationary problems with double degeneration”, Differ. Equations, 47:8 (2011), 1161–1175 | DOI | MR | Zbl

[12] Glazyrina O. V., Pavlova M. F., “The unique solvability of a certain nonlocal nonlinear problem with a spatial operator strongly monotone with respect to the gradient”, Russ. Math. (Iz. VUZ), 56:3 (2012), 83–86 | MR | Zbl

[13] Gaevskii Kh., Greger K., Zakhareas K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp. | MR