Mots-clés : large-scale classification, question classification.
@article{UZKU_2013_155_4_a11,
author = {G. Lezina and A. Kuznetsov and P. Braslavski},
title = {Learning to predict closed questions on {Stack} {Overflow}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {118--133},
year = {2013},
volume = {155},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a11/}
}
TY - JOUR AU - G. Lezina AU - A. Kuznetsov AU - P. Braslavski TI - Learning to predict closed questions on Stack Overflow JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 118 EP - 133 VL - 155 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a11/ LA - en ID - UZKU_2013_155_4_a11 ER -
%0 Journal Article %A G. Lezina %A A. Kuznetsov %A P. Braslavski %T Learning to predict closed questions on Stack Overflow %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 118-133 %V 155 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a11/ %G en %F UZKU_2013_155_4_a11
G. Lezina; A. Kuznetsov; P. Braslavski. Learning to predict closed questions on Stack Overflow. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 118-133. http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a11/
[1] Agichtein E., Castillo C., Donato D., Gionis A., Mishne G., “Finding high-quality content in social media”, Proc. 2008 Int. Conf. on Web Search and Data Mining, ACM, N.Y., 2008, 183–194
[2] Harper F. M., Daniel M., Konstan J. A., “Facts or friends?: distinguishing informational and conversational questions in social Q A sites”, Proc. 27th Int. Conf. on Human Factors in Computing Systems, ACM, N.Y., 2009, 759–768
[3] Rodrigues E. M., Milic-Frayling N., “Socializing or knowledge sharing?: characterizing social intent in community question answering”, Proc. 18th ACM Conf. on Information and Knowledge Management, ACM, N.Y., 2009, 1127–1136
[4] Li B., Tan J., Lyu M. R., King I., Mak B., “Analyzing and predicting question quality in community question answering services”, Proc. 21st Int. Conf. Companion on World Wide Web, ACM, N.Y., 2012, 775–782
[5] Asaduzzaman M., Mashiyat A. S., Roy C. K., Schneider K. A., “Answering questions about unanswered questions of stack overflow”, Proc. Tenth Int. Workshop on Mining Software Repositories, IEEE Press, 2013, 97–100
[6] Barua A., Thomas S. W., Hassan A. E., “What are developers talking about? An analysis of topics and trends in Stack Overflow”, Empir. Software Eng., 19:3 (2014), 619–654 | DOI
[7] Correa D., Sureka A., Fit or unfit: Analysis and prediction of “closed questions” on stack overflow, 2013, arXiv: 1307.7291
[8] Blei D. M., Ng A. Y., Jordan M. I., “Latent dirichlet allocation”, J. Mach. Learn. Res., 3 (2003), 993–1022 | Zbl
[9] Draminski M., Rada-Iglesias A., Enroth S., Wadelius C., Koronacki J., Komorowski J., “Monte Carlo feature selection for supervised classification”, Bionformatics, 24:4 (2008), 110–117 | DOI
[10] Joachims T., “Text Categorization with Support Vector Machines: Learning with Many Relevant Features”, Proc. 10th Eur. Conf. on Machine Learning, Springer-Verlag, London, 1998, 137–142
[11] Langford J., Li L., Zhang T., “Sparse online learning via truncated gradient”, J. Mach. Learn. Res., 10 (2009), 777–801 | MR | Zbl