Mots-clés : autoencoder
@article{UZKU_2013_155_4_a10,
author = {N. Glazyrin},
title = {Mid-level features for audio chord recognition using a~deep neural network},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {109--117},
year = {2013},
volume = {155},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a10/}
}
TY - JOUR AU - N. Glazyrin TI - Mid-level features for audio chord recognition using a deep neural network JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 109 EP - 117 VL - 155 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a10/ LA - en ID - UZKU_2013_155_4_a10 ER -
%0 Journal Article %A N. Glazyrin %T Mid-level features for audio chord recognition using a deep neural network %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 109-117 %V 155 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a10/ %G en %F UZKU_2013_155_4_a10
N. Glazyrin. Mid-level features for audio chord recognition using a deep neural network. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 109-117. http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a10/
[1] Brown J. C., “Calculation of a constant $Q$ spectral transform”, J. Acoust. Soc. Am., 89:1 (1991), 425–434 | DOI
[2] Fujishima T., “Realtime Chord Recognition of Musical Sound: a System Using Common Lisp Music”, Proc. Int. Computer Music Conf. (ICMC), 1999, 464–467
[3] Müller M., Ewert S., Kreuzer S., “Making chroma features more robust to timbre changes”, ICASSP'09, Proc. 2009 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, IEEE Comput. Soc., Washington, DC, USA, 2009, 1877–1880
[4] Khadkevich M., Omologo M., “Use of Hidden Markov Models and Factored Language Models for Automatic Chord Recognition”, Proc. 10th Int. Soc. for Music Information Retrieval Conference (Kobe, Japan, October 26–30, 2009), 2009, 561–566
[5] Mauch M., Automatic Chord Transcription from Audio Using Computational Models of Musical Context, PhD Thesis, University of London, London, 2010, 168 pp.
[6] Oudre L., Grenier Y., Févotte C., “Template-Based Chord Recognition: Influence of the Chord Types”, Proc. 10th Int. Soc. for Music Information Retrieval Conference (Kobe, Japan, October 26–30, 2009), 2009, 153–158
[7] Humphrey E. J., Cho T., Bello J. P., “Learning a robust Tonnetz-space transform for automatic chord recognition”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-12), 2012, 453–456
[8] Maas A. L., Le Q. L., O'Neil T. M., Vinyals O., Nguyen P., Ng A. Y., “Recurrent Neural Networks for Noise Reduction in Robust ASR”, INTERSPEECH 2012, 13th Annual Conference of the International Speech Communication Association (Portland, Oregon, USA, September 9–13, 2012), 2012 URL: http://www1.icsi.berkeley.edu/~vinyals/Files/rnn_denoise_2012.pdf
[9] Glazyrin N. Yu., “Use of autoencoders for recognition of chord sequences in digital sound recordings”, Proc. All-Russ. Sci. Conf. “Analysis of Images, Social Networks, and Texts”, AIST 2013 (Ekaterinburg, April 4–6, 2013), INTUIT National Open University, Moscow, 2013, 211–215 (In Russian)
[10] Vincent P., Larochelle H., Lajoie I., Bengio Y., Manzagol P.-A., “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion”, J. Mach. Learn. Res., 11 (2010), 3371–3408 | MR | Zbl
[11] Ng A., CS294A Lecture Notes. Sparse autoencoder, URL: http://www.stanford.edu/class/cs294a/sparseAutoencoder.pdf
[12] Bengio Y., Courville A. C., Vincent P., Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives, 2012, arXiv: 1206.5538
[13] Elman J. L., “Finding structure in time”, Cognitive Sci., 36:2 (1990), 179–211 | DOI
[14] Glazyrin N. Yu., “Towards the task of audio chord esitmation”, Izv. Irkutsk. Gos. Univ. Ser. Matem., 6:2 (2013), 2–17 (In Russian)
[15] Mauch M., Cannam C., Davies M., Dixon S., Harte C., Kolozali S., Tidhar D., Sandler M., “OMRAS2 Metadata Project 2009”, Late-breaking session at the 10th Int. Conf. on Music Information Retrieval, Kobe, Japan, 2009 URL: http://matthiasmauch.de/_pdf/mauch_omp_2009.pdf
[16] Goto M., Hashiguchi H., Nishimura T., Oka R., “RWC Music Database: Popular, Classical, and Jazz Music Databases”, Proc. 3rd Int. Conf. on Music Information Retrieval (ISMIR 2002), 2002, 287–288
[17] Pauwels J., Peeters G., “Evaluating automatically estimated chord sequences”, Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP-13), 2013, 749–753
[18] Downie S. J., “The music information retrieval evaluation exchange (2005–2007): A window into music information retrieval research”, Acoust. Sci. Tech., 29:4 (2008), 247–255 | DOI
[19] R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2012
[20] Hothorn T., Hornik K., Wiel M. A. van de Zeileis A., “Implementing a Class of Permutation Tests: The Coin Package”, J. Stat. Software, 28:8 (2008), 1–23