The solution of the basic boundary value problems for a singular elliptic equation by the method of potentials
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We have found fundamental solutions to a singular elliptic equation, expressed via hypergeometric functions. Using these fundamental solutions, we have built the simple and double layer potentials. We have reduced the basic boundary value problems for a singular elliptic equation to the equivalent Fredholm integral equations of the second kind and proved their solvability.
Keywords: fundamental solutions, simple and double layer potentials, boundary value problems, Fredholm integral equations, generalized shift operator.
@article{UZKU_2013_155_4_a0,
     author = {R. M. Askhatov},
     title = {The solution of the basic boundary value problems for a~singular elliptic equation by the method of potentials},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {5--15},
     year = {2013},
     volume = {155},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a0/}
}
TY  - JOUR
AU  - R. M. Askhatov
TI  - The solution of the basic boundary value problems for a singular elliptic equation by the method of potentials
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 5
EP  - 15
VL  - 155
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a0/
LA  - ru
ID  - UZKU_2013_155_4_a0
ER  - 
%0 Journal Article
%A R. M. Askhatov
%T The solution of the basic boundary value problems for a singular elliptic equation by the method of potentials
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 5-15
%V 155
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a0/
%G ru
%F UZKU_2013_155_4_a0
R. M. Askhatov. The solution of the basic boundary value problems for a singular elliptic equation by the method of potentials. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 4, pp. 5-15. http://geodesic.mathdoc.fr/item/UZKU_2013_155_4_a0/

[1] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183

[2] Bitsadze A. V., Uravneniya smeshannogo tipa, Izd-vo AN SSSR, M., 1959, 164 pp.

[3] Karol I. L., “K teorii kraevykh zadach dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa”, Matem. sbornik, 38(80):3 (1956), 261–282 | MR | Zbl

[4] Tersenov S. A., “K teorii uravnenii ellipticheskogo tipa, vyrozhdayuschikhsya na granitse oblasti”, Sib. matem. zhurn., 6:5 (1965), 1120–1143 | MR | Zbl

[5] Khairullin R. S., “Teoriya potentsiala dlya modelnogo uravneniya vtorogo roda”, Izv. vuzov. Matem., 1992, no. 3, 64–73 | MR | Zbl

[6] Askhatov R. M., Printsip ekstremuma i zadacha Dirikhle dlya odnogo singulyarnogo ellipticheskogo uravneniya, Dep. v VINITI 04.11.99, No 3289-V99, Kazan, 1999, 14 pp.

[7] Smirnov M. M., Vyrozhdayuschiesya ellpticheskie i giperbolicheskie uravneniya, Nauka, M., 1966, 292 pp. | MR

[8] Mukhlisov F. G., Potentsialy, porozhdennye operatorom obobschennogo sdviga, i kraevye zadachi dlya odnogo klassa singulyarnykh ellipticheskikh uravnenii, Dis. $\dots$ d-ra fiz.-matem. nauk, Kazan, 1993, 324 pp.

[9] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968, 576 pp. | MR