Computation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 91-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We derive a condition for the existence of the minimal eigenvalue answering the positive eigenfunction of the nonlinear eigenvalue problem for an ordinary differential equation. This problem is approximated by a mesh scheme of the finite element method. The convergence of the approximate solutions to the exact ones is investigated. The theoretical results are illustrated by numerical experiments for a model problem.
Keywords: eigenvalue, positive eigenfunction, nonlinear eigenvalue problem, ordinary differential equation, finite element method.
Mots-clés : Sturm–Liouville problem
@article{UZKU_2013_155_3_a9,
     author = {V. S. Zheltukhin and S. I. Solov'ev and P. S. Solov'ev and V. Yu. Chebakova},
     title = {Computation of the minimal eigenvalue for a~nonlinear {Sturm{\textendash}Liouville} problem},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {91--104},
     year = {2013},
     volume = {155},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a9/}
}
TY  - JOUR
AU  - V. S. Zheltukhin
AU  - S. I. Solov'ev
AU  - P. S. Solov'ev
AU  - V. Yu. Chebakova
TI  - Computation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 91
EP  - 104
VL  - 155
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a9/
LA  - ru
ID  - UZKU_2013_155_3_a9
ER  - 
%0 Journal Article
%A V. S. Zheltukhin
%A S. I. Solov'ev
%A P. S. Solov'ev
%A V. Yu. Chebakova
%T Computation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 91-104
%V 155
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a9/
%G ru
%F UZKU_2013_155_3_a9
V. S. Zheltukhin; S. I. Solov'ev; P. S. Solov'ev; V. Yu. Chebakova. Computation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 91-104. http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a9/

[1] Oben Zh.-P., Priblizhennoe reshenie ellipticheskikh kraevykh zadach, Mir, M., 1977, 384 pp. | MR

[2] Abdullin I. Sh., Zheltukhin V. S., Kashapov N. F., Vysokochastotnaya plazmenno-struinaya obrabotka materialov pri ponizhennykh davleniyakh. Teoriya i praktika primeneniya, Izd-vo Kazan. un-ta, Kazan, 2000, 348 pp.

[3] Mekeshkina-Abdullina E. I., Kulevtsov G. N., “Pridanie gotovym izdeliyam iz mekha zadannykh dekorativnykh i potrebitelskikh svoistv s odnovremennym povysheniem stoikosti k atmosfernoi biokorrozii za schet modifikatsii NNTP”, Vestn. Kazan. tekhnol. un-ta, 15:21 (2012), 244–248

[4] Khubatkhuzin A. A., Abdullin I. Sh., Gatina E. B., Kalashnikov D. I., “Izmenenie fiziko-mekhanicheskikh svoistv metallov i ikh splavov s pomoschyu VCh-plazmy ponizhennogo davleniya”, Vestn. Kazan. tekhnol. un-ta, 16:4 (2013), 268–271

[5] Khubatkhuzin A. A., Abdullin I. Sh., Bashkirtsev A. A., Gatina E. B., “Formirovanie nanodiffuzionnykh almazopodobnykh pokrytii na poverkhnosti tverdykh splavov s pomoschyu VCh-plazmy ponizhennogo davleniya”, Vestn. Kazan. tekhnol. un-ta, 16:4 (2013), 262–264

[6] Kovalevskii A. A., Strogova A. S., Labunov V. A., Shevchenok A. A., “Akkumulirovanie vodoroda poroshkami kremniya v plazme VCh-induktsionnogo razryada”, Zhurn. tekhn. fiziki, 81:10 (2011), 140–143

[7] Tumanov Yu. N., Plazmennye, vysokochastotnye, mikrovolnovye i lazernye tekhnologii v khimiko-metallurgicheskikh protsessakh, FIZMATLIT, M., 2010, 968 pp.

[8] Bolshakov A. A., Kruden B. A., “Diagnostika induktivnoi plazmy metodom diodnoi lazernoi spektroskopii pogloscheniya”, Zhurn. tekhn. fiziki, 78:11 (2008), 34–44

[9] Gainullin R. N., Kirpichnikov A. P., “Novyi metod issledovaniya vysokochastotnoi induktsionnoi plazmy”, Izv. vuzov. Problemy energetiki, 2008, no. 1–2, 87–100

[10] Raizer Yu. P., Fizika gazovogo razryada, Izd. dom “Intellekt”, Dolgoprudnyi, 2009, 736 pp.

[11] Zheltukhin V. S., “O razreshimosti odnoi nelineinoi spektralnoi zadachi teorii vysokochastotnykh razryadov ponizhennogo davleniya”, Izv. vuzov. Matem., 1999, no. 5, 26–31 | MR | Zbl

[12] Zheltukhin V. S., “Ob usloviyakh razreshimosti sistemy kraevykh zadach teorii vysokochastotnoi plazmy ponizhennogo davleniya”, Izv. vuzov. Matem., 2005, no. 1, 52–57 | MR | Zbl

[13] Zheltukhin V. S., Olkov E. V., “O razreshimosti odnoi nelineinoi zadachi Shturma–Liuvillya”, Issled. po prikl. matem. i informatike, 25, Izd-vo Kazan. un-ta, Kazan, 2004, 59–65

[14] Gulin A. V., Kregzhde A. V., Raznostnye skhemy dlya nekotorykh nelineinykh spektralnykh zadach, Preprint No 153, IPM AN SSSR, M., 1981, 28 pp.

[15] Kregzhde A. V., “O raznostnykh skhemakh dlya nelineinoi zadachi Shturma–Liuvillya”, Differents. uravneniya, 17:7 (1981), 1280–1284 | MR

[16] Solovëv S. I., Nelineinye zadachi na sobstvennye znacheniya. Priblizhennye metody, LAP Lambert Acad. Publ., Saarbrücken, 2011, 256 pp.

[17] Solovëv S. I., Priblizhennye metody resheniya nelineinykh spektralnykh zadach, Dis. $\dots$ d-ra fiz.-matem. nauk, Kazan, 2010, 262 pp.

[18] Goolin A. V., Kartyshov S. V., “Numerical study of stability and nonlinear eigenvalue problems”, Surv. Math. Ind., 3 (1993), 29–48 | MR | Zbl

[19] Apel Th., Sändig A.-M., Solov'ev S. I., “Computation of 3D vertex singularities for linear elasticity: Error estimates for a finite element method on graded meshes”, Math. Model. Numer. Anal., 36:6 (2002), 1043–1070 | DOI | MR | Zbl

[20] Lyashko A. D., Solov'yev S. I., “Fourier method of solution of FE systems with Hermite elements for Poisson equation”, Sov. J. Numer. Anal. Math. Model., 6:2 (1991), 121–129 | MR | Zbl

[21] Zhigalko Yu. P., Solovëv S. I., “Sobstvennye kolebaniya balki s garmonicheskim ostsillyatorom”, Izv. vuzov. Matem., 2001, no. 10, 36–38 | MR | Zbl

[22] Karchevskii E. M., Solovëv S. I., “Issledovanie spektralnoi zadachi dlya operatora Gelmgoltsa na ploskosti”, Differents. uravneniya, 36:4 (2000), 563–565 | MR

[23] Karchevskii E. M., Solovëv S. I., “Suschestvovanie sobstvennykh znachenii spektralnoi zadachi teorii dielektricheskikh volnovodov”, Izv. vuzov. Matem., 2003, no. 3, 78–80 | MR | Zbl

[24] Gulin A. V., Kregzhde A. V., O primenimosti metoda bisektsii k resheniyu nelineinykh raznostnykh zadach na sobstvennye znacheniya, Preprint No 8, IPM AN SSSR, M., 1982, 22 pp.

[25] Gulin A. V., Yakovleva S. A., “O chislennom reshenii odnoi nelineinoi zadachi na sobstvennye znacheniya”, Vychislitelnye protsessy i sistemy, 6, Nauka, M., 1988, 90–97 | MR

[26] Dautov R. Z., Lyashko A. D., Solov'ev S. I., “The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly”, Russ. J. Numer. Anal. Math. Model., 9:5 (1994), 417–427 | DOI | MR | Zbl

[27] Solov'ëv S. I., “Preconditioned iterative methods for a class of nonlinear eigenvalue problems”, Linear Algebra Appl., 415:1 (2006), 210–229 | DOI | MR

[28] Vainikko G. M., Karma O. O., “O bystrote skhodimosti priblizhënnykh metodov v probleme sobstvennykh znachenii s nelineinym vkhozhdeniem parametra”, Zhurn. vychisl. matem. i matem. fiziki, 14:6 (1974), 1393–1408 | MR | Zbl

[29] Karma O. O., “Asimptoticheskie otsenki pogreshnosti priblizhënnykh kharakteristicheskikh znachenii golomorfnykh fredgolmovykh operator-funktsii”, Zhurn. vychisl. matem. i matem. fiziki, 11:3 (1971), 559–568 | MR | Zbl

[30] Solovëv S. I., “Pogreshnost metoda Bubnova–Galërkina s vozmuscheniyami dlya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Zhurn. vychisl. matem. i matem. fiziki, 32:5 (1992), 675–691 | MR | Zbl

[31] Solovëv S. I., “Approksimatsiya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Izv. vuzov. Matem., 1993, no. 10, 60–68 | MR | Zbl

[32] Solovëv S. I., “Otsenki pogreshnosti metoda konechnykh elementov dlya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Izv. vuzov. Matem., 1994, no. 9, 70–77 | MR | Zbl

[33] Solovëv S. I., “Metod konechnykh elementov dlya simmetrichnykh zadach na sobstvennye znacheniya s nelineinym vkhozhdeniem spektralnogo parametra”, Zhurn. vychisl. matem. i matem. fiziki, 37:11 (1997), 1311–1318 | MR | Zbl

[34] Dautov R. Z., Lyashko A. D., Solovëv S. I., “Skhodimost metoda Bubnova–Galërkina s vozmuscheniyami dlya simmetrichnykh spektralnykh zadach s nelineinym vkhozhdeniem parametra”, Differents. uravneniya, 27:7 (1991), 1144–1153 | MR | Zbl

[35] Vainikko G. M., “Asimptoticheskie otsenki pogreshnosti proektsionnykh metodov v probleme sobstvennykh znachenii”, Zhurn. vychisl. matem. i matem. fiziki, 4:3 (1964), 405–425 | MR | Zbl

[36] Vainikko G. M., “Otsenki pogreshnosti metoda Bubnova–Galërkina v probleme sobstvennykh znachenii”, Zhurn. vychisl. matematiki i mat. fiziki, 5:4 (1965), 587–607 | MR | Zbl

[37] Vainikko G. M., “O bystrote skhodimosti priblizhënnykh metodov v probleme sobstvennykh znachenii”, Zhurn. vychisl. matem. i matem. fiziki, 7:5 (1967), 977–987 | MR | Zbl

[38] Solovëv S. I., “Metod konechnykh elementov dlya nesamosopryazhennykh spektralnykh zadach”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 148, no. 4, 2006, 51–62

[39] Solovëv S. I., “Superskhodimost konechno-elementnykh approksimatsii sobstvennykh funktsii”, Differents. uravneniya, 30:7 (1994), 1230–1238 | MR | Zbl

[40] Solovëv S. I., “Superskhodimost konechno-elementnykh approksimatsii sobstvennykh podprostranstv”, Differents. uravneniya, 38:5 (2002), 710–711 | MR | Zbl

[41] Solovëv S. I., “Approksimatsiya variatsionnykh zadach na sobstvennye znacheniya”, Differents. uravneniya, 46:7 (2010), 1022–1032 | MR | Zbl

[42] Solovëv S. I., “Approksimatsiya neotritsatelno-opredelennykh spektralnykh zadach”, Differents. uravneniya, 47:8 (2011), 1075–1082 | MR

[43] Solovëv S. I., “Approksimatsiya znakoneopredelennykh spektralnykh zadach”, Differents. uravneniya, 48:7 (2012), 1042–1055 | Zbl

[44] Solovëv S. I., “Approksimatsiya differentsialnykh zadach na sobstvennye znacheniya”, Differents. uravneniya, 49:7 (2013), 936–944 | Zbl

[45] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977, 432 pp. | MR

[46] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp. | MR