@article{UZKU_2013_155_3_a8,
author = {R. I. Bikmukhametov},
title = {Algorithmic independence of natural relations on computable linear orders},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {80--90},
year = {2013},
volume = {155},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a8/}
}
TY - JOUR AU - R. I. Bikmukhametov TI - Algorithmic independence of natural relations on computable linear orders JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 80 EP - 90 VL - 155 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a8/ LA - ru ID - UZKU_2013_155_3_a8 ER -
%0 Journal Article %A R. I. Bikmukhametov %T Algorithmic independence of natural relations on computable linear orders %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 80-90 %V 155 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a8/ %G ru %F UZKU_2013_155_3_a8
R. I. Bikmukhametov. Algorithmic independence of natural relations on computable linear orders. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 80-90. http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a8/
[1] Soar R. I., Vychislimo perechislimye mnozhestva i stepeni, Kazan. matem. o-vo, Kazan, 2000, 576 pp. | MR | Zbl
[2] Rosenstein J. G., Linear orderings, Acad. Press, N.Y., 1982, 487 pp. | MR | Zbl
[3] Moses M., Recursive Properties of Isomorphism Types, Ph. D. Thesis, Monash Univ., Clayton, Victoria, Australia, 1983
[4] Moses M., “Recursive linear orders with recursive successivities”, Ann. Pure Appl. Logic, 27:3 (1984), 253–264 | DOI | MR | Zbl
[5] Remmel J. B., “Recursively categorical linear orderings”, Proc. Am. Math. Soc., 83:2 (1981), 387–391 | DOI | MR | Zbl
[6] Downey R. G., Lempp S., Wu G., “On the complexity of the successivity relation in computable linear orderings”, J. Math. Logic, 10:1–2 (2010), 83–99 | DOI | MR | Zbl
[7] Frolov A. N., “Predstavleniya otnosheniya sosedstva vychislimogo lineinogo poryadka”, Izv. vuzov. Matem., 2010, no. 7, 73–85 | MR | Zbl
[8] Thurber J. J., “Every low$_2$ Boolean algebra has a recursive copy”, Proc. Am. Math. Soc., 123:12 (1995), 3859–3866 | MR | Zbl
[9] Alaev P., Terber Dzh., Frolov A. N., “Vychislimost na lineinykh poryadkakh, obogaschennykh predikatami”, Algebra i logika, 48:5 (2009), 549–563 | MR | Zbl
[10] Frolov A. N., “Low linear orderings”, J. Logic Comput., 22:4 (2010), 745–754 | DOI | MR
[11] Downey R. G., “Computability theory and linear orderings”, Handbook of Recursive Mathematics, v. 2, Elsevier, Amsterdam, 1998, 823–976 | MR | Zbl