A plane consolidation problem with discontinuous initial conditions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 63-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A plane consolidation problem for triangular load distribution was solved. A simplified consolidation model was used, which assumed the following: the compressibility of skeleton grains and fluid can be neglected; at the moment of load application, the initial distribution of fluid pressure is established throughout the soil; Terzaghi's hypothesis holds, according to which the whole further process of consolidation follows the equation of piezoconductivity for pressure. It was found that at a fixed moment of time, the pressure increases with the depth only in a certain domain above the surface, which is called the influence domain. Out of this domain, the pressure remains practically constant and the same as the initial distribution. The maximum soil settlement for an infinitely long consolidation time was calculated.
Keywords: theory of filtrational consolidation, triangular load distribution, maximum soil settlement.
@article{UZKU_2013_155_3_a6,
     author = {F. M. Kadyrov},
     title = {A plane consolidation problem with discontinuous initial conditions},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {63--70},
     year = {2013},
     volume = {155},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a6/}
}
TY  - JOUR
AU  - F. M. Kadyrov
TI  - A plane consolidation problem with discontinuous initial conditions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 63
EP  - 70
VL  - 155
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a6/
LA  - ru
ID  - UZKU_2013_155_3_a6
ER  - 
%0 Journal Article
%A F. M. Kadyrov
%T A plane consolidation problem with discontinuous initial conditions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 63-70
%V 155
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a6/
%G ru
%F UZKU_2013_155_3_a6
F. M. Kadyrov. A plane consolidation problem with discontinuous initial conditions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 63-70. http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a6/

[1] Tertsagi K., Teoriya mekhaniki gruntov, Gosstroiizdat, M., 1961, 544 pp.

[2] Gersevanov N. M., Sobranie sochinenii, v 2 t., Stroivoenmorizdat, M., 1948

[3] Florin V. A., Osnovy mekhaniki gruntov, v 2 t., Gosstroiizdat, M., 1959–1961

[4] Florin V. A., Teoriya uplotneniya zemlyanykh mass, Gosstroiizdat, M., 1948, 284 pp.

[5] Bio M. A., “General solutions of the equations of elasticity and consolidation for a porous materials”, J. Appl. Mech., 23:1 (1956), 91–96 | MR | Zbl

[6] Bio M. A., “Mekhanika deformirovaniya i rasprostraneniya akusticheskikh voln v poristoi srede”, Mekhanika, 1963, no. 6, 103–134

[7] McNamee G., Gibson R. E., “Displacement functions and linear transforms applied to diffusion through porous elastic media”, Quart. J. Mech. Appl. Math., 13 (1960), 98–111 | DOI | MR | Zbl

[8] Parton V. Z., “Odna zadacha teorii konsolidatsii nasyschennykh zhidkostyu uplotnyaemykh poristykh sred”, Inzh. zhurn., 5:1 (1965), 176–180

[9] Parton V. Z., “Osesimmetrichnaya zadacha teorii konsolidatsii nasyschennykh zhidkostyu uplotnyaemykh poristykh sred”, Dokl. AN SSSR, 160:4 (1965), 785–788

[10] Verigin N. N., “Konsolidatsiya grunta pod gibkim fundamentom (ploskaya zadacha)”, Osnovaniya, fundamenty i mekhanika gruntov, 1961, no. 5, 20–23

[11] Bear J., Corapcioglu M. Y., Fundamentals of transport phenomena in porous media, Martinus Nijhoff Publ., Dordrecht, 1984, 1003 pp.

[12] Shiffman R. L., “A bibliography of consolidation”: Bear J., Corapcioglu M. Y., Fundamentals of transport phenomena in porous media, Martinus Nijhoff Publ., Dordrecht, 1984, 617–669 | DOI

[13] Kosterin A. V., “Novye modeli i obobschennye resheniya nelineinykh zadach mekhaniki nasyschennykh poristykh sred”, Matem. modelirovanie, 13:2 (2001), 71–77 | MR | Zbl

[14] Tsytovich N. A., Mekhanika gruntov, Vyssh. shk., M., 1983, 287 pp.

[15] Egorov A. G., Kosterin A. V., Skvortsov E. V., Konsolidatsiya i akusticheskie volny v nasyschennykh poristykh sredakh, Izd-vo Kazan. un-ta, Kazan, 1990, 105 pp.

[16] Kotyakhov F. I., Fizika neftyanykh i gazovykh kollektorov, Nedra, M., 1977, 283 pp.

[17] Nikolaevskii V. N., Mekhanika poristykh i treschinovatykh sred, Nedra, M., 1984, 232 pp.

[18] Sedov L. I., Mekhanika sploshnoi sredy, v. I, Nauka, M., 1983, 528 pp. | MR

[19] Dzhonson K., Mekhanika kontaktnogo vzaimodeistviya, Mir, M., 1989, 510 pp.

[20] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 875 pp. | MR

[21] Polyanin A. D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki, Fizmatlit, M., 2001, 576 pp. | Zbl

[22] Barenblatt G. I., Entov V. M., Ryzhik V. M., Teoriya nestatsionarnoi filtratsii zhidkosti i gaza, Nedra, M., 1972, 288 pp.