Continuous real-time recognition of basic gestures using hidden Markov models
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 46-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A system for real-time recognition of 14 basic gestures of the Russian sign language was suggested. The main feature of our approach is the ability to find the beginning and the end of the gestures in a continuous hand movement and to classify them. Segmentation was produced using such characteristics as the velocity and the direction change of hand movement. Hidden Markov models (supervised machine learning approach) were used for training and classification. Besides trajectory, the location of the movement was detected with respect to parts of the body. A software system of gesture recognition with depth sensor was developed for testing our method. The experiments showed successful results in 95% of cases.
Keywords: gesture recognition, hidden Markov models.
@article{UZKU_2013_155_3_a4,
     author = {E. M. Krasilnikov},
     title = {Continuous real-time recognition of basic gestures using hidden {Markov} models},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {46--52},
     year = {2013},
     volume = {155},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a4/}
}
TY  - JOUR
AU  - E. M. Krasilnikov
TI  - Continuous real-time recognition of basic gestures using hidden Markov models
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 46
EP  - 52
VL  - 155
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a4/
LA  - ru
ID  - UZKU_2013_155_3_a4
ER  - 
%0 Journal Article
%A E. M. Krasilnikov
%T Continuous real-time recognition of basic gestures using hidden Markov models
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 46-52
%V 155
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a4/
%G ru
%F UZKU_2013_155_3_a4
E. M. Krasilnikov. Continuous real-time recognition of basic gestures using hidden Markov models. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 46-52. http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a4/

[1] Yang J., Xu Y., Hidden Markov Model for Gesture Recognition, Technical Report CMU-RI-TR-94-10, Carnegie Mellon Univ., Robotics Institute, Pittsburgh, PA, 1994, 27 pp.

[2] Eickeler S., Kosmala A., Rigoll G., “Hidden Markov model based continuous online gesture recognition”, Proc. Fourteenth Int. Conf. on Pattern Recognition, v. 2, 1998, 1206–1208 | DOI

[3] Lv F., Nevatia R., “Recognition and segmentation of 3-D human action using HMM and multi-class adaBoost”, Proc. 9th Eur. Conf. on Computer Vision, Pt. 4, Springer-Verlag, Berlin–Heidelberg, 2006, 359–372

[4] Wang X., Xia M., Cai H., Gao Y., Cattani C., “Hidden-Markov-models-based dynamic hand gesture recognition”, Math. Problems Eng., 2012 (2012), 986134-1–986134–11 | MR

[5] Nam Y., Wohn K., “Recognition of space-time hand-gestures using hidden Markov model”, Proc. ACM Symposium on Virtual Reality Software and Technology, Hong Kong, 1996, 51–58

[6] Dimskis L. S., Izuchaem zhestovyi yazyk, Akademiya, M., 2002, 128 pp.

[7] Microsoft Kinect, URL: http://www.microsoft.com/en-us/kinectforwindows/

[8] Gibet S., Marteau P.-F., “Approximation of Curvature and Velocity for Gesture Segmentation and Synthesis”, Gesture Workshop, Springer-Verlag, Berlin–Heidelberg, 2007, 13–23

[9] Open Natural Interaction Framework, URL: http://www.openni.org/

[10] Accord.NET, URL: http://code.google.com/p/accord/