@article{UZKU_2013_155_3_a14,
author = {D. T. Chekmarev},
title = {A method of constructing {2D} $4$-node and {3D} $8$-node finite elements for solving elasticity problems},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {150--158},
year = {2013},
volume = {155},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/}
}
TY - JOUR AU - D. T. Chekmarev TI - A method of constructing 2D $4$-node and 3D $8$-node finite elements for solving elasticity problems JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 150 EP - 158 VL - 155 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/ LA - ru ID - UZKU_2013_155_3_a14 ER -
%0 Journal Article %A D. T. Chekmarev %T A method of constructing 2D $4$-node and 3D $8$-node finite elements for solving elasticity problems %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 150-158 %V 155 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/ %G ru %F UZKU_2013_155_3_a14
D. T. Chekmarev. A method of constructing 2D $4$-node and 3D $8$-node finite elements for solving elasticity problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 150-158. http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/
[1] Chekmarev D. T., “Chislennye skhemy metoda konechnogo elementa na “azhurnykh” setkakh”, Vopr. atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fiz. protsessov, 2009, no. 2, 49–54
[2] Zhidkov A. V., Zefirov S. V., Kastalskaya K. A., Spirin S. V., Chekmarev D. T., “Azhurnaya skhema chislennogo resheniya trekhmernykh dinamicheskikh zadach teorii uprugosti i plastichnosti”, Vestn. Nizhegor. gos. un-ta im. N. I. Lobachevskogo, 2011, no. 4, Ch. 4, 1480–1482
[3] Chekmarev D. T., “Ob effektivnosti ispolzovaniya uzlovoi informatsii pri reshenii trekhmernykh zadach metodom konechnykh elementov”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Devyatoi Vseros. konf, Otechestvo, Kazan, 2012, 415–420
[4] Zhidkov A. V., Spirin S. V., Chekmarev D. T., “Azhurnaya skhema metoda konechnykh elementov resheniya staticheskikh zadach teorii uprugosti”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 4, 2012, 26–32
[5] Chekmarev D. T., Gladilschikova K. M., “Ob odnom klasse dvumernykh skhem MKE”, Problemy prochnosti i plastichnosti. Mezhvuz. sb., 68, Nizhegor. gos. un-t, N. Novgorod, 2006, 236–242
[6] Bazhenov V. G., Chekmarev D. T., Reshenie zadach nestatsionarnoi dinamiki plastin i obolochek variatsionno-raznostnym metodom, Izd-vo Nizhegor. un-ta, N. Novgorod, 2000, 118 pp.
[7] Golovanov A. I., Berezhnoi D. V., Metod konechnykh elementov v mekhanike deformiruemykh tverdykh tel, Das, Kazan, 2001, 300 pp.
[8] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975, 541 pp.
[9] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986, 318 pp. | MR
[10] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1984, 428 pp. | MR
[11] Kaplun A. B., Morozov E. M., Olfereva M. A., ANSYS v rukakh inzhenera, Editorial URSS, M., 2003, 272 pp.
[12] Jacquotte O.-P., Oden J. T., Becker E. B., “Numerical control of the hourglass instability”, Int. J. Numer. Methods Eng., 22:1 (1986), 219–228 | DOI | MR | Zbl
[13] Bazhenov V. G., Kibets A. I., Tulintsev O. V., “Primenenie momentnoi skhemy MKE dlya analiza nelineinykh trekhmernykh zadach dinamiki massivnykh i obolochechnykh elementov konstruktsii”, Prikladnye problemy prochnosti i plastichnosti. Metody resheniya, 47, Izd-vo Nizhegor. un-ta, N. Novgorod, 1991, 46–53 | MR