A method of constructing 2D $4$-node and 3D $8$-node finite elements for solving elasticity problems
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 150-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new method of constructing FEM schemes for solving 2D and 3D problems of continuum mechanics is proposed. The method is based on the projection of the rare mesh schemes of higher dimension linear finite elements on a 2D or 3D finite element mesh. Based on the example of a linear elasticity problem, the construction of 2D $4$-node and 3D $8$-node FEM schemes is considered. The obtained finite elements are similar to the known multilinear elements and are more efficient. The schemes contain parameters that make it possible to adjust the convergence of the numerical solutions. The possibility of applying this approach to the construction of numerical schemes for other problems of mathematical physics is shown.
Keywords: finite element method, rare mesh scheme, efficiency of numerical schemes, approximation, convergence of numerical solutions, elasticity theory.
@article{UZKU_2013_155_3_a14,
     author = {D. T. Chekmarev},
     title = {A method of constructing {2D} $4$-node and {3D} $8$-node finite elements for solving elasticity problems},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {150--158},
     year = {2013},
     volume = {155},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/}
}
TY  - JOUR
AU  - D. T. Chekmarev
TI  - A method of constructing 2D $4$-node and 3D $8$-node finite elements for solving elasticity problems
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 150
EP  - 158
VL  - 155
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/
LA  - ru
ID  - UZKU_2013_155_3_a14
ER  - 
%0 Journal Article
%A D. T. Chekmarev
%T A method of constructing 2D $4$-node and 3D $8$-node finite elements for solving elasticity problems
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 150-158
%V 155
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/
%G ru
%F UZKU_2013_155_3_a14
D. T. Chekmarev. A method of constructing 2D $4$-node and 3D $8$-node finite elements for solving elasticity problems. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 150-158. http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a14/

[1] Chekmarev D. T., “Chislennye skhemy metoda konechnogo elementa na “azhurnykh” setkakh”, Vopr. atomnoi nauki i tekhniki. Ser. Matem. modelirovanie fiz. protsessov, 2009, no. 2, 49–54

[2] Zhidkov A. V., Zefirov S. V., Kastalskaya K. A., Spirin S. V., Chekmarev D. T., “Azhurnaya skhema chislennogo resheniya trekhmernykh dinamicheskikh zadach teorii uprugosti i plastichnosti”, Vestn. Nizhegor. gos. un-ta im. N. I. Lobachevskogo, 2011, no. 4, Ch. 4, 1480–1482

[3] Chekmarev D. T., “Ob effektivnosti ispolzovaniya uzlovoi informatsii pri reshenii trekhmernykh zadach metodom konechnykh elementov”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Devyatoi Vseros. konf, Otechestvo, Kazan, 2012, 415–420

[4] Zhidkov A. V., Spirin S. V., Chekmarev D. T., “Azhurnaya skhema metoda konechnykh elementov resheniya staticheskikh zadach teorii uprugosti”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 4, 2012, 26–32

[5] Chekmarev D. T., Gladilschikova K. M., “Ob odnom klasse dvumernykh skhem MKE”, Problemy prochnosti i plastichnosti. Mezhvuz. sb., 68, Nizhegor. gos. un-t, N. Novgorod, 2006, 236–242

[6] Bazhenov V. G., Chekmarev D. T., Reshenie zadach nestatsionarnoi dinamiki plastin i obolochek variatsionno-raznostnym metodom, Izd-vo Nizhegor. un-ta, N. Novgorod, 2000, 118 pp.

[7] Golovanov A. I., Berezhnoi D. V., Metod konechnykh elementov v mekhanike deformiruemykh tverdykh tel, Das, Kazan, 2001, 300 pp.

[8] Zenkevich O., Metod konechnykh elementov v tekhnike, Mir, M., 1975, 541 pp.

[9] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986, 318 pp. | MR

[10] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1984, 428 pp. | MR

[11] Kaplun A. B., Morozov E. M., Olfereva M. A., ANSYS v rukakh inzhenera, Editorial URSS, M., 2003, 272 pp.

[12] Jacquotte O.-P., Oden J. T., Becker E. B., “Numerical control of the hourglass instability”, Int. J. Numer. Methods Eng., 22:1 (1986), 219–228 | DOI | MR | Zbl

[13] Bazhenov V. G., Kibets A. I., Tulintsev O. V., “Primenenie momentnoi skhemy MKE dlya analiza nelineinykh trekhmernykh zadach dinamiki massivnykh i obolochechnykh elementov konstruktsii”, Prikladnye problemy prochnosti i plastichnosti. Metody resheniya, 47, Izd-vo Nizhegor. un-ta, N. Novgorod, 1991, 46–53 | MR