@article{UZKU_2013_155_3_a10,
author = {M. M. Karchevsky},
title = {Investigation of solvability of the nonlinear equilibrium problem of a~shallow unfixed shell},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {105--110},
year = {2013},
volume = {155},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a10/}
}
TY - JOUR AU - M. M. Karchevsky TI - Investigation of solvability of the nonlinear equilibrium problem of a shallow unfixed shell JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 105 EP - 110 VL - 155 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a10/ LA - ru ID - UZKU_2013_155_3_a10 ER -
%0 Journal Article %A M. M. Karchevsky %T Investigation of solvability of the nonlinear equilibrium problem of a shallow unfixed shell %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 105-110 %V 155 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a10/ %G ru %F UZKU_2013_155_3_a10
M. M. Karchevsky. Investigation of solvability of the nonlinear equilibrium problem of a shallow unfixed shell. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 3, pp. 105-110. http://geodesic.mathdoc.fr/item/UZKU_2013_155_3_a10/
[1] Vorovich I. I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989, 373 pp. | MR
[2] Bernadou M., Oden J. T., “An existence theorem for a class of nonlinear shallow shell problems”, J. Math. Pures Appl., 60:3 (1981), 285–308 | MR | Zbl
[3] Karchevskii M. M., “O razreshimosti variatsionnykh zadach nelineinoi teorii pologikh obolochek”, Differents. uravneniya, 27:7 (1991), 1996–1203 | MR
[4] Karchevskii M. M., “O razreshimosti geometricheski nelineinykh zadach teorii tonkikh obolochek”, Izv. vuzov. Matem., 1995, no. 6, 30–36 | MR | Zbl
[5] Timergaliev S. N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Dis. $\dots$ d-ra fiz.-matem. nauk, Kazan, 2003, 340 pp.
[6] Timergaliev S. N., “K voprosu o razreshimosti kraevykh zadach nelineinoi teorii pologikh obolochek tipa Timoshenko”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 1, 2008, 115–123 | Zbl
[7] Timergaliev S. N., “O razreshimosti geometricheski nelineinykh kraevykh zadach dlya anizotropnykh obolochek tipa Timoshenko s zhestko zadelannymi krayami”, Izv. vuzov. Matem., 2011, no. 8, 56–68 | MR | Zbl
[8] Mushtari Kh. M., Galimov K. Z., Nelineinaya teoriya uprugikh obolochek, Tatknigoizdat, Kazan, 1957, 432 pp.
[9] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974, 160 pp.
[10] Vainberg M. M., Variatsionnyi metod i metod monotonnykh operatorov, Nauka, M., 1972, 416 pp. | MR
[11] Kondratev V. A., Oleinik O. A., “Kraevye zadachi dlya sistemy uravnenii teorii uprugosti v neogranichennykh oblastyakh. Neravenstva Korna”, Usp. matem. nauk, 43:5 (1988), 55–98 | MR | Zbl
[12] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977, 744 pp. | MR