A Migration Equilibrium Model with Inverse Utility Functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 91-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An equilibrium-type population migration model based on using inverse utility functions of points (regions) instead of the usual ones is suggested. It is shown that this approach makes it possible to formulate the model as an extended system of primal-dual variational inequalities. Based upon this approach, new iterative methods for finding the equilibrium state of the system are proposed.
Keywords: population migration model, inverse utility functions, system of primal-dual variational inequalities, iterative methods.
@article{UZKU_2013_155_2_a7,
     author = {I. V. Konnov},
     title = {A {Migration} {Equilibrium} {Model} with {Inverse} {Utility} {Functions}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {91--99},
     year = {2013},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a7/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - A Migration Equilibrium Model with Inverse Utility Functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 91
EP  - 99
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a7/
LA  - ru
ID  - UZKU_2013_155_2_a7
ER  - 
%0 Journal Article
%A I. V. Konnov
%T A Migration Equilibrium Model with Inverse Utility Functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 91-99
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a7/
%G ru
%F UZKU_2013_155_2_a7
I. V. Konnov. A Migration Equilibrium Model with Inverse Utility Functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 91-99. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a7/

[1] Nagurney A., Network economics: A variational inequality approach, Kluwer Acad. Publ., Dordrecht, 1999, 346 pp.

[2] Konnov I. V., Equilibrium models and variational inequalities, Elsevier, Amsterdam, 2007, 248 pp.

[3] Zukhovitskii S. I., Polyak R. A., Primak M. E., “Ob odnoi obschei zadache otyskaniya ravnovesiya”, Dokl. AN SSSR, 209:2 (1973), 279–282 | Zbl

[4] Bulavskii V. A., “Kvazilineinoe programmirovanie i vektornaya optimizatsiya”, Dokl. AN SSSR, 257:4 (1981), 788–791 | Zbl

[5] Konnov I. V., “Dvoistvennyi podkhod dlya odnogo klassa smeshannykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiziki, 42:9 (2002), 1324–1337 | Zbl

[6] Kinderlerer D., Stampakkya G., Vvedenie v variatsionnye neravenstva i ikh prilozheniya, Mir, M., 1983, 256 pp.

[7] Lapin A. V., Iteratsionnye metody resheniya setochnykh variatsionnykh neravenstv, Kazan. gos. un-t, Kazan, 2008, 132 pp.

[8] Konnov I. V., “Priblizhennyi metod dvoistvennogo tipa dlya sistem variatsionnykh neravenstv”, Izv. vuzov. Matem., 2005, no. 12, 35–45

[9] Konnov I. V., “Sistema pryamo-dvoistvennykh variatsionnykh neravenstv v usloviyakh monotonnosti”, Zhurn. vychisl. matem. i matem. fiziki, 43:10 (2003), 1459–1466 | Zbl

[10] Konnov I. V., “Metod rasschepleniya s lineinym poiskom dlya pryamo-dvoistvennykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiziki, 43:4 (2003), 518–532 | Zbl

[11] Konnov I. V., “Metody dvoistvennogo tipa dlya obratnykh zadach optimizatsii i ikh obobschenii”, Dokl. RAN, 395:6 (2004), 740–742 | Zbl

[12] Konnov I. V., “Convex optimization problems with arbitrary right-hand side perturbations”, Optimization, 54:2 (2005), 131–147 | DOI | Zbl

[13] Konnov I. V., “Dual approach for a class of implicit convex optimization problems”, Math. Methods Oper. Res., 60:1 (2004), 87–99 | DOI | Zbl

[14] Dyabilkin D. A., Konnov I. V., “Metod chastichnoi regulyarizatsii dlya nemonotonnykh variatsionnykh neravenstv”, Zhurn. vychisl. matem. i matem. fiziki, 48:3 (2008), 355–364 | Zbl

[15] Konnov I. V., “Splitting-type method for systems of variational inequalities”, Comput. Oper. Res., 33:2 (2006), 520–534 | DOI | Zbl