Integral Estimates for the Derivatives of Univalent Functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 83-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we prove Brennans's conjecture for the conformal mapping of the unit circle on the assumption that even the Taylor coefficients of the function $\ln f'$ satisfies a certain condition. We also prove Brennan's conjecture for the case when there is an expansion of the function $1/f'$ into a series of simple fractions, provided that this series converges absolutely to zero. In addition, we obtain an estimate for the approximation of the function $1/f'$ by simple fractions.
Mots-clés : Brennan's conjecture
Keywords: approximation by simple fractions.
@article{UZKU_2013_155_2_a6,
     author = {F. D. Kayumov},
     title = {Integral {Estimates} for the {Derivatives} of {Univalent} {Functions}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {83--90},
     year = {2013},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a6/}
}
TY  - JOUR
AU  - F. D. Kayumov
TI  - Integral Estimates for the Derivatives of Univalent Functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 83
EP  - 90
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a6/
LA  - ru
ID  - UZKU_2013_155_2_a6
ER  - 
%0 Journal Article
%A F. D. Kayumov
%T Integral Estimates for the Derivatives of Univalent Functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 83-90
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a6/
%G ru
%F UZKU_2013_155_2_a6
F. D. Kayumov. Integral Estimates for the Derivatives of Univalent Functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 83-90. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a6/

[1] Brennan J. E., “The integrability of derivative in conformal mapping”, J. London Math. Soc., s2-18:2 (1978), 261–272 | DOI | Zbl

[2] Pommerenke Ch., “On the integral means of the derivative of a univalent function”, J. London Math. Soc., s2-32:2 (1985), 254–258 | DOI | Zbl

[3] Bertilsson D., On Brennan's conjecture in conformal mapping, Doct. Thesis, Stockholm, Sweden, 1999, 110 pp. http://www.diva-portal.org/smash/get/diva2:8593/FULLTEXT01.pdf

[4] Kayumov I. R., “O gipoteze Brennana dlya spetsialnogo klassa funktsii”, Matem. zametki, 78:4 (2005), 537–541 | DOI | Zbl

[5] Gronwall T. H., “Some remarks on conformal representation”, Ann. Math. Ser. 2, 16:1–4 (1914–1915), 72–76 | DOI | Zbl

[6] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, Izd-vo inostr. lit., M., 1961, 526 pp.

[7] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966, 345 pp.

[8] Wolff J., “Sur les séries $\sum_{1}^{\infty}\frac{A_k}{z-a_k}$”, C. R. Acad. Sci. Paris, 173 (1921), 1057–1058; 1327–1328 | Zbl

[9] Denjoy A., “Sur les séries de fractions rationnelles”, Bull. Soc. Math. France, 52 (1924), 418–434

[10] Protasov V. Yu., “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | Zbl

[11] Danchenko V. I., “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:4 (2006), 33–52 | DOI | Zbl