Gakhov Set in the Hornich Space under the Bloch Restriction on Pre-Schwarzians
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 65-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Gakhov set contains exactly those functions in the Hornich space over the unit disk which have the unique critical point of the conformal radius. The position of the intersection $\mathcal{A}$ of the Gakhov set and the Bloch space $\mathcal{B}$ is studied relative to the Banach structure of $\mathcal{B}$. A connection is revealed between the topological characteristics of the set $\mathcal{A}$ and the values of the curvature and index of the critical points for the functions in $\mathcal{A}$. An effective description is given for the set of points on the boundary of $\mathcal{A}$ with minimal pre-norm. By using the Minkowski functional, the starlikeness of the subset of the functions in $\mathcal{A}$ with the zero critical point of the conformal radius is established.
Keywords: hyperbolic derivative, conformal (inner mapping) radius, bifurcations of critical points, pre-Schwarzian, Gakhov set, interior and boundary of a set.
Mots-clés : Hornich space, Bloch space
@article{UZKU_2013_155_2_a5,
     author = {A. V. Kazantsev},
     title = {Gakhov {Set} in the {Hornich} {Space} under the {Bloch} {Restriction} on {Pre-Schwarzians}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {65--82},
     year = {2013},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a5/}
}
TY  - JOUR
AU  - A. V. Kazantsev
TI  - Gakhov Set in the Hornich Space under the Bloch Restriction on Pre-Schwarzians
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 65
EP  - 82
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a5/
LA  - ru
ID  - UZKU_2013_155_2_a5
ER  - 
%0 Journal Article
%A A. V. Kazantsev
%T Gakhov Set in the Hornich Space under the Bloch Restriction on Pre-Schwarzians
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 65-82
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a5/
%G ru
%F UZKU_2013_155_2_a5
A. V. Kazantsev. Gakhov Set in the Hornich Space under the Bloch Restriction on Pre-Schwarzians. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 65-82. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a5/

[1] Polia G., Sege G., Zadachi i teoremy iz analiza, v. 2, Nauka, M., 1978, 432 pp.

[2] Haegi H. R., “Extremalprobleme und Ungleichungen konformer Gebietsgrössen”, Compositio Math., 8:2 (1950), 81–111 | Zbl

[3] Kazantsev A. V., “On a problem of Polya and Szegö”, Lobachevskii J. Math., 9 (2001), 37–46 | Zbl

[4] Aksentev L. A., “Svyaz vneshnei obratnoi kraevoi zadachi s vnutrennim radiusom oblasti”, Izv. vuzov. Matem., 1984, no. 2, 3–11

[5] Aksentev L. A., Kazantsev A. V., Kiselev A. V., “O edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Izv. vuzov. Matem., 1984, no. 10, 8–18

[6] Yamashita S., “The Schwarzian derivative and local maxima of the Bloch derivative”, Math. Japonica, 37:6 (1992), 1117–1128 | Zbl

[7] Yamashita S., “The Poincaré density and the Liouville differential equation”, Math. Japonica, 42:3 (1995), 489–508 | Zbl

[8] Kazantsev A. V., “Giperbolicheskie proizvodnye s predshvartsianami iz prostranstva Blokha”, Trudy matem. tsentra im. N. I. Lobachevskogo, 14, Izd-vo Kazan. matem. o-va, Kazan, 2002, 135–144

[9] Kazantsev A. V., “Bifurkatsii i novye usloviya edinstvennosti kriticheskikh tochek giperbolicheskikh proizvodnykh”, Uchen. zap. Kazan. un-ta. Cer. Fiz.-matem. nauki, 153, no. 1, 2011, 180–194 | Zbl

[10] Garnett J., Nicolau A., “Interpolating Blaschke products generate $H^{\infty}$”, Pacific J. Math., 173:2 (1996), 501–510 | Zbl

[11] Avkhadiev F. G., Wirths K.-J., “The conformal radius as a function and its gradient image”, Israel J. Math., 145:1 (2005), 349–374 | DOI | Zbl

[12] Ruscheweyh St., Wirths K.-J., “On extreme Bloch functions with prescribed critical points”, Math. Z., 180 (1982), 91–106 | DOI

[13] Gakhov F. D., “Ob obratnykh kraevykh zadachakh”, Dokl. AN SSSR, 86:4 (1952), 649–652 | Zbl

[14] Aksentev L. A., Khokhlov Yu. E., Shirokova E. A., “O edinstvennosti resheniya vneshnei obratnoi kraevoi zadachi”, Matem. zametki, 24 (1978), 319–333

[15] Kazantsev A. V., “Parametric families of inner mapping radii”, 2nd European Congr. Math., Abstracts (Budapest, July 22–26, 1996), János Bolyai Math. Soc., Budapest, 1996, 30

[16] Avkhadiev F. G., “Funktsional Minkovskogo po oblastyam znachenii logarifma proizvodnoi i usloviya odnolistnosti”, Trudy seminara po kraevym zadacham, 27, Kazan. gos. un-t, Kazan, 1992, 3–21

[17] Grigoryan S. A., Gumerov R. N., Kazantsev A. V., “Group structure in finite coverings of compact solenoidal groups”, Lobachevskii J. Math., 6 (2000), 39–46

[18] Kazantsev A. V., “Bifurkatsii kornei uravneniya Gakhova s levnerovskoi levoi chastyu”, Izv. vuzov. Matem., 1993, no. 6, 69–73 | Zbl

[19] Kazantsev A. V., “Proizvodnye Blokha s blokhovskimi predshvartsianami”, Trudy Matem. tsentra im. N. I. Lobachevskogo, 8, Izd-vo Kazan. matem. o-va,, Kazan, 2001, 117–118

[20] Kazantsev A. V., Chetyre etyuda na temu F. D. Gakhova, Mar. gos. un-t, Ioshkar-Ola, 2012, 64 pp.

[21] Anderson J. M., Clunie J., Pommerenke Ch., “On Bloch functions and normal functions”, J. Reine Angew. Math., 270 (1974), 12–37 | Zbl

[22] Engelking R., Obschaya topologiya, Mir, M., 1986, 752 pp.

[23] Hornich H., “Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen”, Monatsh. Math., 73 (1969), 36–45 | DOI | Zbl

[24] Lamprecht M., “Starlike functions in the Hornich space”, Comput. Meth. Funct. Theor., 7:2 (2007), 573–582 | DOI | Zbl

[25] Gehring F. W., Pommerenke Ch., “On the Nehari univalence criterion and quasicircles”, Comment. Math. Helv., 59 (1984), 226–242 | DOI | Zbl

[26] Aksentev L. A., Kazantsev A. V., “Novoe svoistvo klassa Nekhari i ego primenenie”, Trudy seminara po kraevym zadacham, 25, Kazan. gos. un-t, Kazan, 1990, 33–51 | Zbl

[27] Nehari Z., “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55:6 (1949), 545–551 | DOI | Zbl

[28] Kinder M. I., “Issledovanie uravneniya F. D. Gakhova v sluchae mnogosvyaznykh oblastei”, Trudy seminara po kraevym zadacham, 22, Kazan. gos. un-t, Kazan, 1985, 104–116 | Zbl

[29] Kiselev A. V., Nasyrov S. R., “O strukture mnozhestva kornei uravneniya F. D. Gakhova dlya odnosvyaznoi i mnogosvyaznoi oblastei”, Trudy seminara po kraevym zadacham, 24, Kazan. gos. un-t, Kazan, 1990, 105–115

[30] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vyssh. shk., M., 1979, 336 pp.

[31] Rid M., Saimon R., Metody sovremennoi matematicheskoi fiziki, v. 1, Mir, M., 1977, 359 pp.

[32] Švecova H., “Zobecnění vět o kořenech analytických funkcí”, Čas. Pro Pěst. Mat., 85:4 (1960), 418–438

[33] Kazantsev A. V., “Ob odnoi zadache, svyazannoi s ekstremumom vnutrennego radiusa”, Trudy seminara po kraevym zadacham, 27, Kazan. gos. un-t, Kazan, 1992, 47–62 | Zbl