@article{UZKU_2013_155_2_a3,
author = {A. P. Gogin and M. M. Karchevsky},
title = {On {Error} {Estimates} for a {Variant} of the {Mixed} {Finite} {Element} {Method}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {44--53},
year = {2013},
volume = {155},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a3/}
}
TY - JOUR AU - A. P. Gogin AU - M. M. Karchevsky TI - On Error Estimates for a Variant of the Mixed Finite Element Method JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 44 EP - 53 VL - 155 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a3/ LA - ru ID - UZKU_2013_155_2_a3 ER -
%0 Journal Article %A A. P. Gogin %A M. M. Karchevsky %T On Error Estimates for a Variant of the Mixed Finite Element Method %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 44-53 %V 155 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a3/ %G ru %F UZKU_2013_155_2_a3
A. P. Gogin; M. M. Karchevsky. On Error Estimates for a Variant of the Mixed Finite Element Method. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 44-53. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a3/
[1] Karchevskii M. M., “Ob odnom podkhode k postroeniyu smeshannykh skhem MKE dlya kvazilineinykh ellipticheskikh uravnenii”, Setochnye metody dlya kraevykh zadach i ikh prilozheniya, Materialy Pyatogo Vseros. seminara, Izd-vo Kazan. un-ta, Kazan, 2004, 108–111
[2] Fedotov A. E., Smeshannyi metod konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii, Dis. \ldots kand. fiz.-matem. nauk, Kazan, 2007, 112 pp.
[3] Karchevskii M. M., “Ob otsenke pogreshnosti odnogo varianta smeshannogo metoda konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Devyatoi Vseros. konf., Otechestvo, Kazan, 2012, 220–222
[4] Karchevskii M. M., “Ob iteratsionnykh metodakh chislennoi realizatsii smeshannykh skhem dlya kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Issled. po prikl. matem. i informatike, 25, Izd-vo Kazan. un-ta, Kazan, 2004, 59–69
[5] Gogin A. P., Karchevskii M. M., “Ob iteratsionnykh metodakh dlya nekotorykh klassov smeshannykh skhem dlya kvazilineinykh ellipticheskikh uravnenii”, Setochnye metody dlya kraevykh zadach i prilozheniya, Materialy Devyatoi Vseros. konf., Otechestvo, Kazan, 2012, 90–94
[6] Karchevskii M. M., Fedotov A. E., “Ob odnom variante smeshannogo metoda konechnykh elementov dlya kvazilineinykh ellipticheskikh uravnenii”, Issled. po prikl. matem. i informatike, 24, Kazan. gos. un-t, Kazan, 2003, 74–80
[7] Karchevsky M. M., Fedotov A. E., “Error estimates and iterative procedure for mixed finite element solution of second-order quasi-linear elliptic problems”, Comput. Meth. Appl. Math., 4:4 (2004), 445–463 | DOI | Zbl
[8] Gogin A. P., Karchevskii M. M., “Ob odnom iteratsionnom metode dlya smeshannykh skhem konechnykh elementov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 4, 2011, 5–10
[9] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp.
[10] Badriev I. B., Karchevskii M. M., “Convergence of an iterative process in a Banach space”, J. Math. Sci., 71:6 (1994), 2727–2735 | DOI | Zbl
[11] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980, 512 pp.
[12] Brezzi F., Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, N. Y., 1991, 362 pp. | Zbl
[13] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | Zbl
[14] Farhloul M., “A mixed finite element method for a nonlinear Dirichlet problem”, IMA J. Numer. Anal., 18:1 (1998), 121–132 | DOI | Zbl
[15] Farhloul M., Manouzi H., “On a mixed finite element method for the $p$-Laplacian”, Can. Appl. Math. Quart., 8:1, 67–78 | Zbl
[16] Gaevskii Kh., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp.
[17] Vainberg M. M., Variatsionnye metody issledovaniya nelineinykh operatorov, Gos. izd-vo tekhn.-teoret. lit., M., 1956, 345 pp. | Zbl