Refined Equations of Motion of Multilayered Shells with Transversely Soft Fillers under a Medium Bending
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 167-183
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              As a development of the earlier results, we constructed a refined two-dimensional mathematical model of the dynamic deformation of multilayered plates and shells with transversely soft fillers, based on the classic Kirchhoff–Love model for supporting layers and the hypothesis on similarity of the laws of variation of movements along the thickness of fillers under both static and dynamic loading process. On the ground of this hypothesis, for a transversely soft filler, we derived simplified quasi-static equations of the theory of elasticity, which allow transverse integrating. When integrating the equations to describe the stress-strain state (SSS), we introduced (as in the static problems) two-dimensional unknown functions representing transverse tangent stresses, constant in thickness. Based on the generalized variational Ostrogradskii–Hamilton principle for describing the dynamic processes of deformation with high variability of SSS parameters, we obtained two-dimensional motion equations of general form, where the inertial components have the same degree of accuracy in comparison with the other ones. We simplified the obtained equations for the case of low variability of SSS parameters and considered the problem of free oscillations of a small rectangular multilayered plate, which are characterized by a zero variability of the functions in the tangential directions and are realized in the plate without deformation of the supporting layers.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
orthotropic plate, refined theory, trigonometric functions, free oscillations, oscillation frequencies.
Mots-clés : longitudinal-transverse form
                    
                  
                
                
                Mots-clés : longitudinal-transverse form
@article{UZKU_2013_155_2_a14,
     author = {V. N. Paimushin and T. V. Polyakova},
     title = {Refined {Equations} of {Motion} of {Multilayered} {Shells} with {Transversely} {Soft} {Fillers} under a {Medium} {Bending}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {167--183},
     publisher = {mathdoc},
     volume = {155},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a14/}
}
                      
                      
                    TY - JOUR AU - V. N. Paimushin AU - T. V. Polyakova TI - Refined Equations of Motion of Multilayered Shells with Transversely Soft Fillers under a Medium Bending JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 167 EP - 183 VL - 155 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a14/ LA - ru ID - UZKU_2013_155_2_a14 ER -
%0 Journal Article %A V. N. Paimushin %A T. V. Polyakova %T Refined Equations of Motion of Multilayered Shells with Transversely Soft Fillers under a Medium Bending %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 167-183 %V 155 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a14/ %G ru %F UZKU_2013_155_2_a14
V. N. Paimushin; T. V. Polyakova. Refined Equations of Motion of Multilayered Shells with Transversely Soft Fillers under a Medium Bending. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 167-183. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a14/
