Elastic-Plastic Deformations in a Body under the Impact of a Cavitation Bubble
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 131-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper presents a mathematical model of, a calculation technique for and some results of investigation of elastic-plastic deformations in a body when a load is applied to its surface which simulates the pulse action of a high-speed cumulative liquid jet arising during the collapse of a cavitation bubble attached to the body. The body is considered to be a semi-space of perfect elastic-plastic material. While constructing the law of loading, the liquid jet is represented as a cylindrical column with a semi-spherical end. The jet strikes the body orthogonally to its surface. The plastic state is described by the continuous correction of stresses so that the yield strength of the material is not exceeded. Main attention in the study is drawn to the variation of the position and configuration of yielding zones arising in the body and to the influence of the plasticity of the material and the non-uniformity of the load in the circular area of its application.
Keywords: cavitation bubble, elastic-plastic body, plasticity, stress intensity.
@article{UZKU_2013_155_2_a11,
     author = {A. A. Aganin and M. A. Ilgamov and N. A. Khismatullina},
     title = {Elastic-Plastic {Deformations} in a {Body} under the {Impact} of a {Cavitation} {Bubble}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {131--143},
     year = {2013},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a11/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - M. A. Ilgamov
AU  - N. A. Khismatullina
TI  - Elastic-Plastic Deformations in a Body under the Impact of a Cavitation Bubble
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 131
EP  - 143
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a11/
LA  - ru
ID  - UZKU_2013_155_2_a11
ER  - 
%0 Journal Article
%A A. A. Aganin
%A M. A. Ilgamov
%A N. A. Khismatullina
%T Elastic-Plastic Deformations in a Body under the Impact of a Cavitation Bubble
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 131-143
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a11/
%G ru
%F UZKU_2013_155_2_a11
A. A. Aganin; M. A. Ilgamov; N. A. Khismatullina. Elastic-Plastic Deformations in a Body under the Impact of a Cavitation Bubble. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 131-143. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a11/

[1] Lord Rayleigh, “On the pressure developed in a liquid during the collapse of a spherical cavity”, Philosophical Magazine, Ser. 6, 34:200 (1917), 94–98 | DOI | Zbl

[2] Kornfeld M., Suvorov N., “On the destructive action of cavitation”, J. Appl. Phys., 15:6 (1944), 495–506 | DOI

[3] Plesset M. S., Chapman R. B., “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary”, J. Fluid Mech., 47:2 (1971), 283–290 | DOI

[4] Lauterborn W., Bolle H., “Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary”, J. Fluid Mech., 72:2 (1975), 391–399 | DOI

[5] Aganin A. A., Ilgamov M. A., Malakhov V. G., Khalitova T. F., Khismatullina N. A., “Udarnoe vozdeistvie kavitatsionnogo puzyrka na uprugoe telo”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 131–146

[6] Aganin A. A., Malakhov V. G., Khalitova T. F., Khismatullina N. A., “Silovoe vozdeistvie kavitatsionnogo puzyrka na uprugoe telo”, Problemy nelineinoi mekhaniki deformiruemogo tverdogo tela, Tr. Vtoroi mezhdunar. konf., Kazan. gos. un-t, Kazan, 2009, 20–24

[7] Mettin R., Luther S., Lindau O., Koch P., Lauterborn W., “Investigations of cavitation bubble dynamics by means of fast cinematography”, The Int. Conf. on Multiphase Systems, ICMS'2000, Gilem Pol Publ., Ufa, 2000, 279–287

[8] Aganin A. A., Ilgamov M. A., Khalitova T. F., “Udarnoe vozdeistvie strui na zhestkuyu stenku”, Aktualnye problemy mekhaniki sploshnoi sredy. K 20-letiyu IMM KazNTs RAN, v. 1, Foliant, Kazan, 2011, 134–145

[9] Haller K. K., Ventikos Y., Poulikakos D., Monkewitz P., “Computational study of high-speed liquid droplet impact”, J. Appl. Phys., 92:5 (2002), 2821–2828 | DOI

[10] Aganin A. A., Ilgamov M. A., Kosolapova L. A., Malakhov V. G., “Skhlopyvanie kavitatsionnogo puzyrka v zhidkosti vblizi tverdoi stenki”, Vestn. Bashkir. un-ta, 18:1 (2013), 15–21 | Zbl

[11] Cheban V. G., Naval I. K., Sabodash P. F., Cherednichenko R. A., Chislennye metody resheniya zadach dinamicheskoi teorii uprugosti, Shtiintsa, Kishinev, 1976, 226 pp.

[12] Uilkins M. L., “Raschet uprugo-plasticheskikh techenii”, Vychislitelnye metody v gidrodinamike, Mir, M., 1967, 212–263

[13] Aganin A. A., Malakhov V. G., Khalitova T. F., Khismatullina N. A., “Raschet silovogo vozdeistviya kavitatsionnogo puzyrka na uprugoe telo”, Vestn. Tat. gos. gumanit.-ped. un-ta, 2010, no. 4(22), 6–13

[14] Ilgamov M. A., Gilmanov A. N., Neotrazhayuschie usloviya na granitsakh raschetnoi oblasti, Fizmatlit, M., 2003, 240 pp.

[15] Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Kraiko A. N., Prokopov G. P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.