Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 18-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper we study the convergence of iterative methods for solving variational inequalities with monotone-type operators in Banach spaces. Such inequalities arise in the description of the deformation processes of soft network rotational shells. We establish the properties of these operators, i.e. coercivity, potentiality, bounded Lipschitz continuity, and pseudomonotonicity or inverse strong monotonicity. For solving these variational inequalities, we consider an iterative method, investigate its convergence, prove the boundedness of the iterative sequence, and establish that each its weakly convergent subsequence has as a limit the solution of the original variational inequality.
Keywords: variational inequality, pseudo-monotone operator, potential operator, iterative method, soft network shell.
@article{UZKU_2013_155_2_a1,
     author = {I. B. Badriev and V. V. Banderov},
     title = {Iterative {Methods} for {Solving} {Variational} {Inequalities} of the {Theory} of {Soft} {Shells}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {18--32},
     year = {2013},
     volume = {155},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/}
}
TY  - JOUR
AU  - I. B. Badriev
AU  - V. V. Banderov
TI  - Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 18
EP  - 32
VL  - 155
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/
LA  - ru
ID  - UZKU_2013_155_2_a1
ER  - 
%0 Journal Article
%A I. B. Badriev
%A V. V. Banderov
%T Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 18-32
%V 155
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/
%G ru
%F UZKU_2013_155_2_a1
I. B. Badriev; V. V. Banderov. Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 18-32. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/

[1] Abdyusheva G. R., Badriev I. B., Banderov V. V., Zadvornov O. A., Tagirov R. R., “Matematicheskoe modelirovanie zadachi o ravnovesii myagkoi biologicheskoi obolochki. I: Obobschennaya postanovka”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 4, 2012, 57–73

[2] Badriev I. B., Zadvornov O. A., Saddek A. M., “Issledovanie skhodimosti iteratsionnykh metodov resheniya nekotorykh variatsionnykh neravenstv s psevdomonotonnymi operatorami”, Differents. uravneniya, 37:7 (2001), 891–898 | Zbl

[3] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp.

[4] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp.

[5] Tseng P., “Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming”, Math. Program., 48:1–3 (1990), 249–263 | DOI | Zbl

[6] Zhu D., Marcotte P., “New classes of generalized monotonicity”, J. Optimaz. Theory App., 87:2 (1995), 457–471 | DOI | Zbl

[7] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp.

[8] Vainberg M. M., Lavrentev I. M., “Nelineinye kvazipotentsialnye operatory”, Dokl. AN SSSR, 205:5 (1972), 1022–1024 | Zbl

[9] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikladnaya matematika v nauchno-tekhnicheskikh zadachakh, Izd-vo Kazan. un-ta, Kazan, 1976, 12–21

[10] Lyashko A. D., Karchevskii M. M., “O reshenii nekotorykh nelineinykh zadach teorii filtratsii”, Izv. vuzov. Matem., 1975, no. 6, 73–81

[11] Badriev I. B., Karchevskii M. M., “O skhodimosti iteratsionnogo protsessa v banakhovom prostranstve”, Issled. po prikl. matem., 17, Izd-vo Kazan. un-ta, Kazan, 1990, 3–15

[12] Glovinski R. G., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 576 pp.

[13] Fortin M., Glowinski R., Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, North-Holland, Amsterdam, 1983, 340 pp. | Zbl

[14] Gabay D., Mercier B., “A dual algorithm for the solution of nonlinear variational problems via finite element approximation”, Comput. Math. Appl., 2:1 (1976), 17–40 | DOI | Zbl

[15] Lions P. L., Mercier B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16:6 (1979), 964–979 | DOI | Zbl

[16] Fortin M., Glowinski R., Méthodes de lagrangien augmenté: applications à la résolution numérique de problèmes aux limites, Dunod, Paris, 1982, 336 pp. | Zbl

[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp.