@article{UZKU_2013_155_2_a1,
author = {I. B. Badriev and V. V. Banderov},
title = {Iterative {Methods} for {Solving} {Variational} {Inequalities} of the {Theory} of {Soft} {Shells}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {18--32},
year = {2013},
volume = {155},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/}
}
TY - JOUR AU - I. B. Badriev AU - V. V. Banderov TI - Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 18 EP - 32 VL - 155 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/ LA - ru ID - UZKU_2013_155_2_a1 ER -
%0 Journal Article %A I. B. Badriev %A V. V. Banderov %T Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 18-32 %V 155 %N 2 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/ %G ru %F UZKU_2013_155_2_a1
I. B. Badriev; V. V. Banderov. Iterative Methods for Solving Variational Inequalities of the Theory of Soft Shells. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 2, pp. 18-32. http://geodesic.mathdoc.fr/item/UZKU_2013_155_2_a1/
[1] Abdyusheva G. R., Badriev I. B., Banderov V. V., Zadvornov O. A., Tagirov R. R., “Matematicheskoe modelirovanie zadachi o ravnovesii myagkoi biologicheskoi obolochki. I: Obobschennaya postanovka”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 4, 2012, 57–73
[2] Badriev I. B., Zadvornov O. A., Saddek A. M., “Issledovanie skhodimosti iteratsionnykh metodov resheniya nekotorykh variatsionnykh neravenstv s psevdomonotonnymi operatorami”, Differents. uravneniya, 37:7 (2001), 891–898 | Zbl
[3] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 588 pp.
[4] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978, 336 pp.
[5] Tseng P., “Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming”, Math. Program., 48:1–3 (1990), 249–263 | DOI | Zbl
[6] Zhu D., Marcotte P., “New classes of generalized monotonicity”, J. Optimaz. Theory App., 87:2 (1995), 457–471 | DOI | Zbl
[7] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989, 400 pp.
[8] Vainberg M. M., Lavrentev I. M., “Nelineinye kvazipotentsialnye operatory”, Dokl. AN SSSR, 205:5 (1972), 1022–1024 | Zbl
[9] Glushenkov V. D., “Ob odnom uravnenii nelineinoi teorii filtratsii”, Prikladnaya matematika v nauchno-tekhnicheskikh zadachakh, Izd-vo Kazan. un-ta, Kazan, 1976, 12–21
[10] Lyashko A. D., Karchevskii M. M., “O reshenii nekotorykh nelineinykh zadach teorii filtratsii”, Izv. vuzov. Matem., 1975, no. 6, 73–81
[11] Badriev I. B., Karchevskii M. M., “O skhodimosti iteratsionnogo protsessa v banakhovom prostranstve”, Issled. po prikl. matem., 17, Izd-vo Kazan. un-ta, Kazan, 1990, 3–15
[12] Glovinski R. G., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979, 576 pp.
[13] Fortin M., Glowinski R., Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, North-Holland, Amsterdam, 1983, 340 pp. | Zbl
[14] Gabay D., Mercier B., “A dual algorithm for the solution of nonlinear variational problems via finite element approximation”, Comput. Math. Appl., 2:1 (1976), 17–40 | DOI | Zbl
[15] Lions P. L., Mercier B., “Splitting algorithms for the sum of two nonlinear operators”, SIAM J. Numer. Anal., 16:6 (1979), 964–979 | DOI | Zbl
[16] Fortin M., Glowinski R., Méthodes de lagrangien augmenté: applications à la résolution numérique de problèmes aux limites, Dunod, Paris, 1982, 336 pp. | Zbl
[17] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 400 pp.