The altitudinal and latitudinal structure of the planetary waves of a wind field in the stratosphere
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 1, pp. 178-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this article, we propose an empirical model for the planetary waves of prevailing zonal and meridional winds with zonal wave numbers $m = 1,2$ in the layer located at the isobaric surface height of 0.316 hPa above ground level. The model is based on the UK Met Office daily data on zonal and meridional winds for the period from 1992 till 2011 for the Northern and Southern hemispheres. The approaches and methods used for the processing of the initial fields allowed us to identify and analyze separately wave disturbances caused by interday and interannual variability, and the quasi-stationary component of the harmonics under study. The analysis showed that the altitudinal and latitudinal amplitude distributions of each of the harmonics of zonal and meridional winds differ considerably in structure. In this work, we describe the physical mechanisms explaining the individual characteristics of the fields under consideration. The trends of the maximum amplitudes of zonal and meridional winds in the stratosphere show that in 1992–2011, there was an amplification of the wave activity of both harmonics due to the non-stationary wave disturbances with the time scales of planetary waves (2–30 days). The established peculiarities of wave disturbances in the fields of zonal and meridional winds in the stratosphere with the time scales of planetary waves can be used for the construction of a new reference model of the middle atmosphere at an altitude interval of 10–55 km.
Keywords: planetary waves, zonal wind, meridional wind, middle atmosphere.
@article{UZKU_2013_155_1_a23,
     author = {V. V. Guryanov and A. N. Fakhrutdinova},
     title = {The altitudinal and latitudinal structure of the planetary waves of a~wind field in the stratosphere},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {178--187},
     year = {2013},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a23/}
}
TY  - JOUR
AU  - V. V. Guryanov
AU  - A. N. Fakhrutdinova
TI  - The altitudinal and latitudinal structure of the planetary waves of a wind field in the stratosphere
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 178
EP  - 187
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a23/
LA  - ru
ID  - UZKU_2013_155_1_a23
ER  - 
%0 Journal Article
%A V. V. Guryanov
%A A. N. Fakhrutdinova
%T The altitudinal and latitudinal structure of the planetary waves of a wind field in the stratosphere
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 178-187
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a23/
%G ru
%F UZKU_2013_155_1_a23
V. V. Guryanov; A. N. Fakhrutdinova. The altitudinal and latitudinal structure of the planetary waves of a wind field in the stratosphere. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 1, pp. 178-187. http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a23/

[1] Atmosfera, Spravochnik, Gidrometeoizdat, L., 1991, 510 pp.

[2] CIRA 1972: COSPAR International Reference Atmosphere 1972, Akad.-Verlag, Berlin, 1972, 450 pp.

[3] Barnett J. J., Corney M., “Middle atmosphere reference model derived from satellite data”, Handbook for MAP, 16 (1985), 47–85

[4] Barnett J. J., Corney M., “Planetary waves”, Handbook for MAP, 16 (1985), 86–143

[5] Jacobi Ch., Fröhlich K., Portnyagin Y., Merzlyakov E., Solovjova T., Makarov N., Rees D., Fahrutdinova A., Guryanov V., Fedorov D., Korotyshkin D., Forbes J., Pogoreltsev A., Kürschner D., “Semi-empirical model of middle atmosphere wind from the ground to the lower thermosphere”, Adv. Space Res., 43:2 (2009), 239–246 | DOI

[6] Barnett J. J., Chandra S., “COSPAR International Reference Atmosphere Grand Mean”, Adv. Space Res., 10:12 (1990), 7–10 | DOI

[7] Guryanov V. V., Fakhrutdinova A. N., “Vysotno-shirotnaya struktura planetarnykh voln v stratosfere i troposfere”, Georesursy, 2006, no. 4(21), 36–39

[8] Guryanov V. V., Fahrutdinova A. N., “Height and time variability of planetary wave activity”, Adv. Space Res., 43:3 (2009), 401–412 | DOI

[9] Guryanov V. V., Fakhrutdinova A. N., Pshenichnyi P. V., “Prostranstvenno-vremennaya izmenchivost termodinamicheskikh polei v stratosfere”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 150, no. 3, 2008, 21–35

[10] Swinbank R., O'Neill A., “A stratosphere-troposphere data assimilation system”, Mon. Weather Rev., 122 (1994), 686–702 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] Peters D., Vargin P., Körnich H., “A study of the zonally asymmetric tropospheric forcing of the austral vortex splitting during September 2002”, Tellus A, 59:3 (2007), 384–394 | DOI

[12] Kanukhina A. Yu., Nechaeva L. A., Suvorova E. V., Pogoreltsev A. I., “Klimaticheskie trendy temperatury, zonalnogo potoka i statsionarnykh planetarnykh voln po dannym NCEP/NCAR reanaliza”, Izv. RAN. Fizika atmosfery i okeana, 43:6 (2007), 754–763

[13] Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K. C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R., Joseph D., “The NCEP/NCAR 40-year reanalysis project”, Bull. Amer. Meteorol. Soc., 77:3 (1996), 437–471 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI