The influence of surface roughness on the electrochemical activity of nickel electrodes
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 1, pp. 119-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Nickel micro- and nanostructures have unique magnetic and electrochemical properties and are widely applied in chemical current sources. The goal of this work was to develop the methods of preparation of nickel electrodes and to study an electrochemically active surface with given properties. A standard electrode (spongy nickel), and an electrode with a roughened surface, chemically modified by nickel fibers, were taken as objects of analysis. Surface roughness was found to be an important parameter influencing the electrode electrochemical activity. For quantitative estimation of roughness, the fractal dimension of the surface of the electrodes was calculated. It was revealed that, with the growth of the fractal dimension, the surface area and the electrochemical activity of the electrodes increase. An electrode with a roughened surface for electrochemical sensors was proposed, which can also find application in optical gas sensors, chemical current sources, catalysis, and electrochromic devices.
Keywords: chemical deposition, nickel electrodes, micro- and nano-fibers, roughened surface, electrochemical activity
Mots-clés : fractal dimension.
@article{UZKU_2013_155_1_a16,
     author = {M. V. Morozov and A. Kh. Gilmutdinov and M. Kh. Salakhov},
     title = {The influence of surface roughness on the electrochemical activity of nickel electrodes},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {119--126},
     year = {2013},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/}
}
TY  - JOUR
AU  - M. V. Morozov
AU  - A. Kh. Gilmutdinov
AU  - M. Kh. Salakhov
TI  - The influence of surface roughness on the electrochemical activity of nickel electrodes
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 119
EP  - 126
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/
LA  - ru
ID  - UZKU_2013_155_1_a16
ER  - 
%0 Journal Article
%A M. V. Morozov
%A A. Kh. Gilmutdinov
%A M. Kh. Salakhov
%T The influence of surface roughness on the electrochemical activity of nickel electrodes
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 119-126
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/
%G ru
%F UZKU_2013_155_1_a16
M. V. Morozov; A. Kh. Gilmutdinov; M. Kh. Salakhov. The influence of surface roughness on the electrochemical activity of nickel electrodes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 1, pp. 119-126. http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/

[1] Liu C. M., Guo L., Wang R. M., Deng Y., Xu H. B., Yang S., “Magnetic nanochains of metal formed by assembly of small nanoparticles”, Chem. Commun., 2004, no. 23, 2726–2727 | DOI

[2] Khairullina A. Ya., Ol'schanskaya T. V., Kudanovich O. N., Filimonenko D. S., “Correlation between optical, structural, and sensor properties of nanostructures of nickel oxide on aluminum oxide substrates”, J. Appl. Spectrosc., 77:5 (2010), 700–707 | DOI

[3] Shui X., Chung D. D. L., “Submicron diameter nickel filaments and their polymer-matrix composites”, J. Mater. Sci., 35:7 (2000), 1773–1785 | DOI

[4] Yang Q. M., Ettel V. A., Babjak J., Charles D. K., Mosoiu M. A., “Pasted $\mathrm{Ni(OH)}_2$ electrodes using Ni powders for high-drain-rate, Ni-based batteries”, J. Electrochem. Soc., 150:4 (2003), A543–A550 | DOI

[5] Zhu W. H., Flanzer M. E., Tatarchuk B. J., “Nickel-zinc accordion-fold batteries with microfibrous electrodes using a papermaking process”, J. Power Sources, 112:2 (2002), 353–366 | DOI

[6] Liu Y., Wang H., Li J., Lu Y., Wu H., Xue Q., Chen L., “Monolithic microfibrous nickel catalyst co-modified with ceria and alumina for miniature hydrogen production via ammonia decomposition”, Appl. Catal. A: Gen., 328:1 (2007), 77–82 | DOI

[7] Morozov M. V., Batalin G. A., Gareev B. I., Gilmutdinov A. Kh., Salakhov M. Kh., “Sintez nikelevykh volokon s razvitoi poverkhnostyu bez vliyaniya magnitnym polem i surfaktantami i issledovanie ikh elektrokhimicheskoi aktivnosti”, Nanotekhnika, 2011, no. 4, 61–65

[8] Korovin N. V., Skundin A. M., Khimicheskie istochniki toka, Izd-vo MEI, M., 2003, 740 pp.

[9] Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J. M., “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature, 407 (2000), 496–499 | DOI

[10] Feder E., Fraktaly, Mir, M., 1991, 254 pp. | MR

[11] Andrievskii R. A., Ragulya A. V., Nanostrukturnye materialy, Izd. tsentr “Akademiya”, M., 2005, 192 pp.

[12] Watanabe T., Nezu A., Abe Y., “Formation mechanism of electrical conductive nanoparticles by induction thermal plasmas”, Thin Solid Films, 435:1–2 (2003), 27–32 | DOI

[13] Rahman I. Z., Razeeb K. M., Kamruzzaman Md., Serantoni M., “Characterisation of electrodeposited nickel nanowires using NCA template”, J. Mater. Process. Tech., 153–154 (2004), 811–815 | DOI

[14] Zakharov Yu. A., Popova A. N., Pugachev V. M., Dodonov V. G., Kolmykov R. P., “Sintez i svoistva nanorazmernykh poroshkov metallov gruppy zheleza i ikh vzaimnykh sistem”, Perspektivnye materialy, 2008, no. 6, 249–254

[15] Morozov M. V., Batalin G. A., Gareev B. I., Gilmutdinov A. Kh., “Metod sinteza nikelevykh mikro- i nanovolokonnykh struktur s razvitoi poverkhnostyu”, Nanotekhnika, 2010, no. 3, 29–33

[16] Damaskin B. B., Petrii O. A., Elektrokhimiya, Vyssh. shk., M., 1987, 295 pp.

[17] Trasatti S., Petrii O. A., “Izmerenie istinnoi ploschadi poverkhnosti v elektrokhimii”, Elektrokhimiya, 29:4 (1993), 557–575

[18] Van M., Zhuan Zh., Dai Zh., Shiao D., “Amperometricheskii sensor etanola s elektrodom iz gubchatogo nikelya”, Elektrokhimiya, 47:1 (2011), 103–108

[19] Mironov V. L., Osnovy skaniruyuschei zondovoi mikroskopii, In-t fiziki mikrostruktur RAN, N. Novgorod, 2004, 114 pp.

[20] Safonov A. A., Shterenberg A. M., “Fraktalnyi analiz poverkhnosti dlya otsenki fiziko-mekhanicheskikh svoistv modifitsiruemykh v gazovom razryade materialov”, Nanotekhnika, 2010, no. 3, 59–62

[21] Torkhov N. A., Bozhkov V. G., Ivonin I. V., Novikov V. A., “Opredelenie fraktalnoi razmernosti poverkhnosti epitaksialnogo $n$-GaAs v lokalnom predele”, Fizika i tekhnika poluprovodnikov, 43:1 (2009), 38–47

[22] Morozov M. V., Batalin G. A., Gareev B. I., Gilmutdinov A. Kh., Tagirov M. S., Salakhov M. Kh., “Issledovanie faktora sherokhovatosti poverkhnosti nikelevykh volokon, sintezirovannykh pod vliyaniem magnitnogo polya”, Nanotekhnika, 2012, no. 2, 48–54