Mots-clés : fractal dimension.
@article{UZKU_2013_155_1_a16,
author = {M. V. Morozov and A. Kh. Gilmutdinov and M. Kh. Salakhov},
title = {The influence of surface roughness on the electrochemical activity of nickel electrodes},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {119--126},
year = {2013},
volume = {155},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/}
}
TY - JOUR AU - M. V. Morozov AU - A. Kh. Gilmutdinov AU - M. Kh. Salakhov TI - The influence of surface roughness on the electrochemical activity of nickel electrodes JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2013 SP - 119 EP - 126 VL - 155 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/ LA - ru ID - UZKU_2013_155_1_a16 ER -
%0 Journal Article %A M. V. Morozov %A A. Kh. Gilmutdinov %A M. Kh. Salakhov %T The influence of surface roughness on the electrochemical activity of nickel electrodes %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2013 %P 119-126 %V 155 %N 1 %U http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/ %G ru %F UZKU_2013_155_1_a16
M. V. Morozov; A. Kh. Gilmutdinov; M. Kh. Salakhov. The influence of surface roughness on the electrochemical activity of nickel electrodes. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 1, pp. 119-126. http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a16/
[1] Liu C. M., Guo L., Wang R. M., Deng Y., Xu H. B., Yang S., “Magnetic nanochains of metal formed by assembly of small nanoparticles”, Chem. Commun., 2004, no. 23, 2726–2727 | DOI
[2] Khairullina A. Ya., Ol'schanskaya T. V., Kudanovich O. N., Filimonenko D. S., “Correlation between optical, structural, and sensor properties of nanostructures of nickel oxide on aluminum oxide substrates”, J. Appl. Spectrosc., 77:5 (2010), 700–707 | DOI
[3] Shui X., Chung D. D. L., “Submicron diameter nickel filaments and their polymer-matrix composites”, J. Mater. Sci., 35:7 (2000), 1773–1785 | DOI
[4] Yang Q. M., Ettel V. A., Babjak J., Charles D. K., Mosoiu M. A., “Pasted $\mathrm{Ni(OH)}_2$ electrodes using Ni powders for high-drain-rate, Ni-based batteries”, J. Electrochem. Soc., 150:4 (2003), A543–A550 | DOI
[5] Zhu W. H., Flanzer M. E., Tatarchuk B. J., “Nickel-zinc accordion-fold batteries with microfibrous electrodes using a papermaking process”, J. Power Sources, 112:2 (2002), 353–366 | DOI
[6] Liu Y., Wang H., Li J., Lu Y., Wu H., Xue Q., Chen L., “Monolithic microfibrous nickel catalyst co-modified with ceria and alumina for miniature hydrogen production via ammonia decomposition”, Appl. Catal. A: Gen., 328:1 (2007), 77–82 | DOI
[7] Morozov M. V., Batalin G. A., Gareev B. I., Gilmutdinov A. Kh., Salakhov M. Kh., “Sintez nikelevykh volokon s razvitoi poverkhnostyu bez vliyaniya magnitnym polem i surfaktantami i issledovanie ikh elektrokhimicheskoi aktivnosti”, Nanotekhnika, 2011, no. 4, 61–65
[8] Korovin N. V., Skundin A. M., Khimicheskie istochniki toka, Izd-vo MEI, M., 2003, 740 pp.
[9] Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J. M., “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries”, Nature, 407 (2000), 496–499 | DOI
[10] Feder E., Fraktaly, Mir, M., 1991, 254 pp. | MR
[11] Andrievskii R. A., Ragulya A. V., Nanostrukturnye materialy, Izd. tsentr “Akademiya”, M., 2005, 192 pp.
[12] Watanabe T., Nezu A., Abe Y., “Formation mechanism of electrical conductive nanoparticles by induction thermal plasmas”, Thin Solid Films, 435:1–2 (2003), 27–32 | DOI
[13] Rahman I. Z., Razeeb K. M., Kamruzzaman Md., Serantoni M., “Characterisation of electrodeposited nickel nanowires using NCA template”, J. Mater. Process. Tech., 153–154 (2004), 811–815 | DOI
[14] Zakharov Yu. A., Popova A. N., Pugachev V. M., Dodonov V. G., Kolmykov R. P., “Sintez i svoistva nanorazmernykh poroshkov metallov gruppy zheleza i ikh vzaimnykh sistem”, Perspektivnye materialy, 2008, no. 6, 249–254
[15] Morozov M. V., Batalin G. A., Gareev B. I., Gilmutdinov A. Kh., “Metod sinteza nikelevykh mikro- i nanovolokonnykh struktur s razvitoi poverkhnostyu”, Nanotekhnika, 2010, no. 3, 29–33
[16] Damaskin B. B., Petrii O. A., Elektrokhimiya, Vyssh. shk., M., 1987, 295 pp.
[17] Trasatti S., Petrii O. A., “Izmerenie istinnoi ploschadi poverkhnosti v elektrokhimii”, Elektrokhimiya, 29:4 (1993), 557–575
[18] Van M., Zhuan Zh., Dai Zh., Shiao D., “Amperometricheskii sensor etanola s elektrodom iz gubchatogo nikelya”, Elektrokhimiya, 47:1 (2011), 103–108
[19] Mironov V. L., Osnovy skaniruyuschei zondovoi mikroskopii, In-t fiziki mikrostruktur RAN, N. Novgorod, 2004, 114 pp.
[20] Safonov A. A., Shterenberg A. M., “Fraktalnyi analiz poverkhnosti dlya otsenki fiziko-mekhanicheskikh svoistv modifitsiruemykh v gazovom razryade materialov”, Nanotekhnika, 2010, no. 3, 59–62
[21] Torkhov N. A., Bozhkov V. G., Ivonin I. V., Novikov V. A., “Opredelenie fraktalnoi razmernosti poverkhnosti epitaksialnogo $n$-GaAs v lokalnom predele”, Fizika i tekhnika poluprovodnikov, 43:1 (2009), 38–47
[22] Morozov M. V., Batalin G. A., Gareev B. I., Gilmutdinov A. Kh., Tagirov M. S., Salakhov M. Kh., “Issledovanie faktora sherokhovatosti poverkhnosti nikelevykh volokon, sintezirovannykh pod vliyaniem magnitnogo polya”, Nanotekhnika, 2012, no. 2, 48–54