Error compensation in quantum key distribution using entangled biphoton polarization states
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 1, pp. 99-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider optimal strategies for selecting optical fiber segments for Alice and Bob's quantum channels that are used for quantum key distribution by entangled biphoton polarization states. We show that the quantum bit error rate in a sifted key can be substantially reduced, even with large dispersions in the random parameters of optical fiber. To do this, Alice and Bob's channels should be designed from fibers manufactured using the same technology. The selection of the pairs of optical fiber segments should be correlated, with a correlation coefficient close to 1.
Keywords: quantum cryptography, quantum bit error rate, optical fiber.
Mots-clés : EPR-protocol
@article{UZKU_2013_155_1_a13,
     author = {G. P. Miroshnichenko and A. A. Sotnikova},
     title = {Error compensation in quantum key distribution using entangled biphoton polarization states},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {99--105},
     year = {2013},
     volume = {155},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a13/}
}
TY  - JOUR
AU  - G. P. Miroshnichenko
AU  - A. A. Sotnikova
TI  - Error compensation in quantum key distribution using entangled biphoton polarization states
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2013
SP  - 99
EP  - 105
VL  - 155
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a13/
LA  - ru
ID  - UZKU_2013_155_1_a13
ER  - 
%0 Journal Article
%A G. P. Miroshnichenko
%A A. A. Sotnikova
%T Error compensation in quantum key distribution using entangled biphoton polarization states
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2013
%P 99-105
%V 155
%N 1
%U http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a13/
%G ru
%F UZKU_2013_155_1_a13
G. P. Miroshnichenko; A. A. Sotnikova. Error compensation in quantum key distribution using entangled biphoton polarization states. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 155 (2013) no. 1, pp. 99-105. http://geodesic.mathdoc.fr/item/UZKU_2013_155_1_a13/

[1] Rashleigh S. C., Ulrich R., “High birefringence in tension-coiled single-mode fibers”, Opt. Lett., 5:8 (1980), 354–356 | DOI

[2] Menyuk C. R., Wai P. K. A., “Polarization evolution and dispersion in fibers with spatially varying birefringence”, J. Opt. Soc. Am. B, 11:7 (1994), 1288–1296 | DOI

[3] Poole C. D., “Statistical treatment of polarization dispersion in single-mode fiber”, Opt. Lett., 13:8 (1988), 687–689 | DOI

[4] Poole C. D., Winters J. H., Nagel J. A., “Dynamical equation for polarization dispersion”, Opt. Lett., 16:6 (1991), 372–374 | DOI

[5] Poppe A., Fedrizzi A., Ursin R., Bohm H.R., Lorunser T., Maurhardt O., Peev M., Suda M., Kurtsiefer C., Weinfurter H., Jennewein T., Zeilinger A., “Practical quantum key distribution with polarization entangled photons”, Opt. Express, 12:16 (2004), 3865–3871 | DOI

[6] Muller A., Zbinden H., Gisin N., “Quantum cryptography over 23 km in installed under-lake telecom fibre”, Europhys. Lett., 33:5 (1996), 335–339 | DOI