On a variant of the improved theory of ortotropic plates: nonclassical forms of free fluctuations
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 100-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper offers an improved variant of the equations of free fluctuations of ortotropic plates constructed as a first approximation by the reduction of the three-dimensional equations of the theory of elasticity to the two-dimensional equations of the theory of plates by using trigonometric basic functions and by satisfying static boundary conditions on boundary surfaces. The solutions to these equations are found for a plate with jointedly supported edges. The equations are divided into two isolated systems of equations. The first system describes the nonclassical shiftless longitudinal-transverse forms of free fluctuations accompanied by a distortion of the flat form of the transverse sections. It is shown that the fluctuation frequencies corresponding to these forms at some geometrical parameters of a plate strongly depend on Poisson's ratio and elasticity module in a transverse direction and, for plates of a medium thickness with the same frequency parameter (tone), can be considerably lower than the frequencies corresponding to the classical longitudinal forms of free fluctuations proceeding with preservation of the flat form of the transverse sections. The second system of equations describes the transverse bend-shift forms of free fluctuations, the frequencies of which decrease at the reduction of the transverse shift module. According to the quality and pithiness, these equations are almost equivalent to the similar equations in the known variants of improved theories, but, unlike them, under the increase in the tone number and the reduction of thickness ratio, lead to the solutions obtained within the classical theory of rods.
Keywords: ortotropic plate, improved theory, trigonometric functions, free fluctuations, fluctuation frequencies.
Mots-clés : longitudinal-transverse form
@article{UZKU_2012_154_4_a7,
     author = {V. N. Paimushin and T. V. Polyakova},
     title = {On a~variant of the improved theory of ortotropic plates: nonclassical forms of free fluctuations},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {100--115},
     year = {2012},
     volume = {154},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a7/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - T. V. Polyakova
TI  - On a variant of the improved theory of ortotropic plates: nonclassical forms of free fluctuations
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 100
EP  - 115
VL  - 154
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a7/
LA  - ru
ID  - UZKU_2012_154_4_a7
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A T. V. Polyakova
%T On a variant of the improved theory of ortotropic plates: nonclassical forms of free fluctuations
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 100-115
%V 154
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a7/
%G ru
%F UZKU_2012_154_4_a7
V. N. Paimushin; T. V. Polyakova. On a variant of the improved theory of ortotropic plates: nonclassical forms of free fluctuations. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 100-115. http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a7/

[1] Ambartsumyan S. A., Teoriya anizotropnykh plastin: prochnost, ustoichivost i kolebaniya, Nauka, M., 1987, 360 pp. | MR

[2] Bolotin V. V., Novichkov Yu. N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980, 375 pp.

[3] Pelekh B. L., Teoriya obolochek s konechnoi sdvigovoi zhestkostyu, Naukova dumka, Kiev, 1973, 248 pp. | Zbl

[4] Rikards R. B., Teters G. A., Ustoichivost obolochek iz kompozitnykh materialov, Zinatne, Riga, 1974, 310 pp. | Zbl

[5] Vekua I. N., Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982, 288 pp. | MR | Zbl

[6] Gorynin G. L., Nemirovskii Yu. V., Prostranstvennye zadachi izgiba i krucheniya sloistykh konstruktsii. Metod asimptoticheskogo rasschepleniya, Nauka, Novosibirsk, 2004, 407 pp.

[7] Grigolyuk E. I., Selezov I. T., Neklassicheskie teorii kolebanii sterzhnei plastin i obolochek, Itogi nauki i tekhniki. Mekhanika tverdykh deformiruemykh tel, 5, VINITI, M., 1973, 272 pp. | Zbl

[8] Altenbakh Kh., “Osnovnye napravleniya teorii mnogosloinykh tonkostennykh konstruktsii”, Mekhanika kompozitnykh materialov, 34:3 (1998), 333–348

[9] Paimushin V. N., “Tochnye i priblizhennye analiticheskie resheniya zadachi o ploskikh formakh svobodnykh kolebanii pryamougolnoi ortotropnoi plastiny so svobodnymi krayami, osnovannye na trigonometricheskikh bazisnykh funktsiyakh”, Mekhanika kompozitnykh materialov, 41:4 (2005), 461–488

[10] Paimushin V. N., “Tochnye analiticheskie resheniya zadachi o ploskikh formakh svobodnykh kolebanii pryamougolnoi plastiny so svobodnymi krayami”, Izv. vuzov. Matem., 2006, no. 8, 54–62 | MR

[11] Paimushin V. N., Polyakova T. V., “Tochnye analiticheskie resheniya trekhmernoi zadachi o svobodnykh kolebaniyakh ortotropnogo pryamougolnogo parallelepipeda so svobodnymi granyami”, Mekhanika kompozitnykh materialov i konstruktsii, 12:3 (2006), 317–336

[12] Paimushin V. N., Polyakova T. V., “Tochnye i priblizhennye uravneniya statiki i dinamiki sterzhnya-polosy i obobschennye klassicheskie modeli”, Mekhanika kompozitnykh materialov i konstruktsii, 14:1 (2008), 126–156

[13] Paimushin V. N., Polyakova T. V., “O malykh svobodnykh kolebaniyakh polosy”, Prikl. matem. i mekhanika, 75:1 (2011), 72–82 | MR | Zbl

[14] Paimushin V. N., Ivanov V. A., Polyakova T. V., “Issledovanie napryazhenno-deformirovannogo sostoyaniya sterzhnya-polosy na osnove uravnenii ploskoi zadachi teorii uprugosti i novogo varianta utochnennoi teorii sterzhnei”, Mekhanika kompozitnykh materialov i konstruktsii, 14:3 (2008), 373–388

[15] Paimushin V. N., Firsov V. A., Obolochki iz stekla. Raschet napryazhenno-deformirovannogo sostoyaniya, Mashinostroenie, M., 1993, 208 pp.