@article{UZKU_2012_154_4_a6,
author = {A. A. Aganin and T. S. Guseva},
title = {Numerical simulation of contact interaction of compressible fluids on {Eulerian} grids},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {74--99},
year = {2012},
volume = {154},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/}
}
TY - JOUR AU - A. A. Aganin AU - T. S. Guseva TI - Numerical simulation of contact interaction of compressible fluids on Eulerian grids JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2012 SP - 74 EP - 99 VL - 154 IS - 4 UR - http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/ LA - ru ID - UZKU_2012_154_4_a6 ER -
%0 Journal Article %A A. A. Aganin %A T. S. Guseva %T Numerical simulation of contact interaction of compressible fluids on Eulerian grids %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2012 %P 74-99 %V 154 %N 4 %U http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/ %G ru %F UZKU_2012_154_4_a6
A. A. Aganin; T. S. Guseva. Numerical simulation of contact interaction of compressible fluids on Eulerian grids. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 74-99. http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/
[1] Benson D. J., “Computational methods in Lagrangian and Eulerian hydrocodes”, Comput. Method. Appl. Mech. Engrg., 99:2–3 (1992), 235–394 | DOI | MR | Zbl
[2] Mair H. U., “Review: hydrocodes for structural response to underwater explosions”, Shock Vib., 6:2 (1999), 81–96 | DOI
[3] Allaire G., Clerc S., Kokh S., “A five-equation model for the simulation of interfaces between compressible fluids”, J. Comput. Phys., 181:2 (2002), 577–616 | DOI | MR | Zbl
[4] Burago N. G., Kukudzhanov V. N., “Obzor kontaktnykh algoritmov”, Izv. RAN. MTT, 2005, no. 1, 45–87
[5] Kadioglu S. Y., Sussman M., Osher S., Wright J. P., Kang M., “A second order primitive preconditioner for solving all speed multi-phase flows”, J. Comput. Phys., 209:2 (2005), 477–503 | DOI | MR | Zbl
[6] Garimella R., Dyadechko V., Swartz B., Shashkov M., “Interface reconstruction in multi-fluid, multi-phase flow simulations”, Proc. 14th Int. Meshing Roundtable, Springer, 2005, 19–32 | DOI
[7] Johnsen E., Colonius T., “Implementation of WENO schemes in compressible multicomponent flow problems”, J. Comput. Phys., 219:2 (2006), 715–732 | DOI | MR | Zbl
[8] Hu X. Y., Khoo B. C., Adams N. A., Huang F. L., “A conservative interface method for compressible flows”, J. Comput. Phys., 219:2 (2006), 553–578 | DOI | MR | Zbl
[9] Kim J., Lowengrub J., “Interfaces and multicomponent fluids”, Encyclopedia of Mathematical Physics, Elsevier, 2006, 135–144 | DOI
[10] Donghong W., Ning Z., Ou H., Jianming L., “A Ghost Fluid based Front Tracking Method for multimedium compressible flows”, Acta Math. Sci., 29:6 (2009), 1629–1646 | DOI | MR | Zbl
[11] So K. K., Hu X. Y., Adams N. A., “Anti-diffusion method for interface steepening in two-phase incompressible flow”, J. Comput. Phys., 230:13 (2011), 5155–5177 | DOI | MR | Zbl
[12] Chizhov A. V., Shmidt A. A., “Vysokoskorostnoi udar kapli o pregradu”, Zhurn. teoret. fiziki, 70:12 (2000), 18–27
[13] Golovachev Yu. P., Notkina E. A., Chizhov A. V., Shmidt A. A., “Raschet udarno-volnovykh techenii so svobodnymi poverkhnostyami”, Zhurn. vychisl. matem. i matem. fiziki, 41:1 (2001), 157–167 | MR | Zbl
[14] Godunov S. K., Zabrodin A. V. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR
[15] Unverdi S. O., Tryggvason G., “A front-tracking method for viscous, incompressible, multi-fluid flows”, J. Comput. Phys., 100:1 (1992), 25–37 | DOI | Zbl
[16] Cocchi J.-P., Saurel R., “A Riemann problem based method for the resolution of compressible multimaterial flows”, J. Comput. Phys., 137:2 (1997), 265–298 | DOI | MR | Zbl
[17] Glimm J., Grove J. W., Li X.-L., Shyue K.-M., Zhang Q., Zeng Y., “Three dimensional Front Tracking”, SIAM J. Sci. Comput., 19:3 (1998), 703–727 | DOI | MR | Zbl
[18] Glimm J., Grove J., Li X.-L., Tan D., “Robust computational algorithms for dynamic interface tracking in three dimensions”, SIAM J. Sci. Comput., 21:6 (2000), 2240–2256 | DOI | MR | Zbl
[19] Haller K. K., Ventikos Y., Poulikakos D., “Computational study of high-speed liquid droplet impact”, J. Appl. Phys., 95:2 (2002), 2821–2828 | DOI | MR
[20] Terashima H., Tryggvason G., “A front-tracking/ghost-fluid method for fluid interfaces in compressible flows”, J. Comput. Phys., 228:11 (2009), 4012–4037 | DOI | Zbl
[21] Harlow F., Amsden A., Fluid dynamics: a LASL monograph, Nat. Techn. Inform. Serv., Springfield, Virginia, 1971, 115 pp.
[22] Abgrall R., Karni S., “Computations of compressible multifluids”, J. Comput. Phys., 169:2 (2001), 594–623 | DOI | MR | Zbl
[23] Hirt C. W., Nichols B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39:1 (1981), 201–225 | DOI | Zbl
[24] Wemmenhove R., Veldman A. E. P., Luppes R., Bunnik T., “Application of a VOF method to model compressible two-phase flow in sloshing tanks”, Proc. of OMAE2008, 2008, 603–612, Paper No OMAE2008-57254
[25] Petrov N. V., “Issledovanie lokalnogo energovydeleniya v vode vblizi svobodnoi poverkhnosti”, Nauch.-tekhn. vedom. SPbGPU, 2012, no. 1, 92–96
[26] Rider W. J., Kothe D., “Reconstructing volume tracking”, J. Comput. Phys., 141:2 (1998), 112–152 | DOI | MR | Zbl
[27] Renardy Y., Renardy M., “PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method”, J. Comput. Phys., 183:2 (2002), 400–421 | DOI | MR | Zbl
[28] Ubbink O., Issa R. I., “A method for capturing sharp fluid interfaces on arbitrary meshes”, J. Comput. Phys., 153:1 (1999), 26–50 | DOI | MR | Zbl
[29] Cassidy D. A., Edwards J. R., Tian M., “An investigation of interface-sharpening schemes for multi-phase mixture flows”, J. Comput. Phys., 228:16 (2009), 5628–5649 | DOI | MR | Zbl
[30] Osher S., Sethian J., “Front propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations”, J. Comput. Phys., 78:2 (1988), 12–49 | DOI | MR
[31] Sethian J. A., Smereka P., “Level Set Methods for fluid interfaces”, Annu. Rev. Fluid Mech., 35 (2003), 341–372 | DOI | MR | Zbl
[32] Karni S., “Multicomponent flow calculation by a consistent primitive algorithm”, J. Comput. Phys., 112:1 (1994), 31–43 | DOI | MR | Zbl
[33] Gaponenko Yu. A., “Chislennoe modelirovanie gazovoi kumulyatsii produktov vzryva pri detonatsii ploskikh parallelnykh zaryadov”, Vychisl. tekhnologii, 5:4 (2000), 31–39 | Zbl
[34] Abgrall R., “How to prevent pressure oscillations in multicomponent flow calculations: A quasi-conservative approach”, J. Comput. Phys., 125:1 (1996), 150–160 | DOI | MR | Zbl
[35] Anderson D. M., McFadden G. B., Wheeler A. A., “Diffuse-interface methods in fluid mechanics”, Ann. Rev. Fluid Mech., 30 (1998), 139–165 | DOI | MR
[36] Lowengrub J., Truskinovsky L., “Quasi-incompressible Cahn-Hilliard fluids and topological transitions”, Proc. Roy. Soc. Lond. A, 454 (1998), 2617–2654 | DOI | MR | Zbl
[37] Larrouturou B., “How to preserve the mass fraction positivity when computing compressible multi-component flows”, J. Comput. Phys., 95:1 (1990), 59–84 | DOI | MR
[38] Shyue K. M., “An efficient shock-capturing algorithm for compressible multicomponent problems”, J. Comput. Phys., 142:1 (1998), 208–242 | DOI | MR | Zbl
[39] Abgrall R., Saurel R., “Discrete equations for physical and numerical compressible multiphase mixtures”, J. Comput. Phys., 186:2 (2003), 361–396 | DOI | MR | Zbl
[40] Osterman A., Dular M., Sirok B., “Numerical simulation of a near-wall bubble collapse in an ultrasonic field”, J. Fluid Sci. Techn., 4:1 (2009), 210–221 | DOI
[41] Shyue K. M., “An anti-diffusion based Eulerian interface-sharpening algorithm for compressible two-phase flow with cavitation”, Proc. 8th Int. Symposium on Cavitation, Singapore, 2012, Abstr. No 198, svobodnyi URL: http://www.math.ntu.edu.tw/~shyue/mypapers/kmshyue_cav2012.pdf
[42] Ballil A., Jolgam S., Nowakowski A. F., Nicoleau F. C. G. A., “Numerical simulation of compressible two-phase flows using an Eulerian type reduced model”, Proc. World Congress on Engineering, WCE 2012, London, 2012, 1835–1840
[43] Yabe T., Xiao F., Utsumi T., “The constrained interpolation profile method for multiphase analysis”, J. Comput. Phys., 169:2 (2001), 556–593 | DOI | MR | Zbl
[44] Doihara R., Takahashi K., “Numerical calculation of laser-produced bubble near a solid boundary until the second collapse”, JSME. Int. J. Ser. B, 44:2 (2001), 238–246 | DOI
[45] Kawasaki K., “Numerical model of 2-D multiphase flow with solid-liquid-gas interaction”, Int. J. Offshore Polar Eng., 15:3 (2005), 198–203 | MR
[46] Kokh S., Allaire G., “Numerical simulation of 2D two-phase flows with interface”, Godunov Methods: Theory and Applications, 2001, 513–518 | DOI | MR | Zbl
[47] Xiao F., Honma Y., Kono T., “A simple algebraic interface capturing scheme using hyperbolic tangent function”, Int. J. Numer. Methods Fluids, 48:9 (2005), 1023–1040 | DOI | Zbl
[48] Sun Y., Beckermann C., “Sharp interface tracking using the phase-field equation”, J. Comput. Phys., 220:2 (2007), 626–653 | DOI | MR | Zbl
[49] Yabe T., Wang P. Y., “Unified numerical procedure for compressible and incompressible fluid”, J. Phys. Soc. Japan, 60:7 (1991), 2105–2108 | DOI | MR
[50] Fedkiw R., Liu X.-D., Osher S., “A general technique for eliminating spurious oscillations in conservative schemes for multiphase and multispecies Euler equations”, Int. J. Nonlinear Sci. Numer. Sim., 3:2 (2002), 99–106 | MR
[51] Karni S., “Hybrid multifluid algorithms”, SIAM J. Sci. Comput., 17:5 (1996), 1019–1039 | DOI | MR | Zbl
[52] Glimm J., Li X. L., Liu Y.-J., Xu Z.-L., Zhao N., “Conservative front tracking with improved accuracy”, SIAM J. Num. Analysis, 41:5 (2003), 1926–1947 | DOI | MR | Zbl
[53] Fedkiw R., Aslam T., Merriman B., Osher S., “A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Gluid Method)”, J. Comput. Phys., 152:2 (1999), 457–492 | DOI | MR | Zbl
[54] Fedkiw R., “Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method”, J. Comput. Phys., 175:1 (2002), 200–224 | DOI | Zbl
[55] Nourgaliev R. R., Dinh T. N., Theofanous T. G., “Direct numerical simulation of compressible multiphase flows: interaction of shock waves with dispersed multimaterial media”, Proc. 5th Int. Conf. Multiphase Flow, ICMF'04, Yokohama, Japan, 2004, Paper No 494, svobodnyi URL: http://www.crss.ucsb.edu/music/LEVEL0/ConferencesOpen/Conferences.2004/DNS-ICMF04.pdf
[56] Takahira H., Yuasa S., “Numerical simulations of shock-bubble interactions using an improved Ghost Fluid Method”, ASME 2005 Fluids Engineering Division Summer Meeting, FEDSM2005, 2005, No FEDSM 2005-77119, 777–785
[57] Nourgaliev R., Kadioglu S., Mousseau V., “Fully-implicit interface tracking for all-speed multifluid flows”, Computational Fluid Dynamics 2008, Springer, Berlin–Heidelberg, 2009, 551–557 | DOI
[58] Ogata Y., Yabe T., “Shock capturing with improved numerical viscosity in primitive Euler representation”, Comput. Phys. Commun., 119:2–3 (1999), 179–193 | DOI | Zbl
[59] Peng G., Ishizuka M., Hayama S., “An improved CIP-CUP method for submerged water jet flow simulation”, JSME Int. J. Ser. B, 44:4 (2001), 497–504 | DOI
[60] Ida M., “An improved numerical solver for the unified solution of compressible and incompressible fluids involving free surfaces. II. Multi-Time-Step integration and applications”, Comput. Phys. Commun., 150:3 (2003), 300–322 | DOI | MR | Zbl
[61] Nomura S., Nishida K., “Numerical simulation of a single bubble rising in an ultrasonic standing wave field”, Jpn. J. Appl. Phys., 42 (2003), 2975–2980 | DOI
[62] Tong M., Browne D. J., “Modelling compressible gas flow near the nozzle of a gas atomiser using a new unified model”, Computers and Fluids, 38:6 (2009), 1183–1190 | DOI | Zbl
[63] Tanaka N., Maseguchi R., Ogawara T., “Improvement of conservative property and interface resolution of mesh-based two-phase flow simulation algorithms for splashing fluid behavior”, Nuc. Eng. Design, 240:12 (2010), 3984–3990 | DOI
[64] Lee S.-J., Cho B.-G., Lee I., “Two-dimensional unsteady aerodynamics analysis based on a multiphase perspective”, Comput. Fluids, 53 (2012), 105–116 | DOI | MR | Zbl
[65] Xiao F., “A class of single-cell high-order semi-Lagrangian advection schemes”, Month. Weath. Rev., 128:4 (2000), 1165–1176 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[66] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow with free surface”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | Zbl
[67] Amsden A. A., Harlow F. H., “A simplified MAC technique for incompressible fluid flow calculations”, J. Comput. Phys., 6:2 (1970), 322–325 | DOI | MR | Zbl
[68] Patankar S. V., Spalding D. B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, J. Heat Mass Transfer, 15 (1972), 1787–1806 | DOI | Zbl
[69] Harlow F. H., Amsden A. A., “Numerical simulation of almost incompressible flow”, J. Comput. Phys., 3:1 (1968), 80–93 | DOI | Zbl
[70] Issa R. I., “Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., 62:1 (1986), 40–65 | DOI | MR | Zbl
[71] Yoon S. Y., Yabe T., “The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method”, Comput. Phys. Commun., 119:2–3 (1999), 149–158 | DOI | Zbl
[72] Yabe T., Ishikawa T., Wang P. Y., Aoki T., Kadota Y., Ikeda F., “A universal solver for hyperbolic equations by cubic-polynomial interpolation. II. Two- and three-dimensional solvers”, Comput. Phys. Commun., 66:2–3 (1991), 233–242 | DOI | MR | Zbl
[73] Zalesak S. T., “Fully multidimensional flux-corrected transport algorithms for fluids”, J. Comput. Phys., 31:3 (1979), 335–362 | DOI | MR | Zbl
[74] Yabe T., Xiao F., “Description of complex and sharp interface with fixed grids in incompressible and compressible fluid”, Comput. Math. Appl., 29:1 (1995), 15–25 | DOI | MR | Zbl
[75] Blake J. R., Gibson D. C., “Cavitation bubbles near boundaries”, Annu. Rev. Fluid Mech., 19 (1987), 99–123 | DOI
[76] Aganin A. A., Khalitova T. F., Khismatullina N. A., “Metod chislennogo resheniya zadach silnogo szhatiya nesfericheskogo kavitatsionnogo puzyrka”, Vychisl. tekhnologii, 15:1 (2010), 14–32 | Zbl
[77] Aganin A. A., Ilgamov M. A., Khalitova T. F., “Udarnoe vozdeistvie strui na zhestkuyu stenku”, Aktualnye problemy mekhaniki sploshnoi sredy, K 20-letiyu IMM KazNTs RAN, v. 1, Foliant, Kazan, 2011, 134–146
[78] Benjamin T. B., Ellis A. T., “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries”, Phil. Trans. R. Soc. Lond., 260:1110 (1966), 221–240 | DOI
[79] Crum L. A., “Surface oscillations and jet development in pulsating bubbles”, J. de Physique, 40:8 (1979), C8-285–C8-288
[80] Ohl C.-D., Kurz T., Geisler R., Lindau O., Lauterborn W., “Bubble dynamics, shock waves and sonoluminescence”, Phil. Trans. R. Soc. Lond., 357:1751 (1999), 269–294 | DOI | MR | Zbl
[81] Philipp A., Lauterborn W., “Cavitation erosion by single laser-produced bubbles”, J. Fluid Mech., 361 (1998), 75–116 | DOI | Zbl
[82] Aganin A. A., Ilgamov M. A., Malakhov V. G., Khalitova T. F., Khismatullina N. A., “Udarnoe vozdeistvie kavitatsionnogo puzyrka na uprugoe telo”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 131–146 | MR