Numerical simulation of contact interaction of compressible fluids on Eulerian grids
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 74-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A short review on numerical simulation of the problems of contact interaction between compressible media with a strong difference in their acoustic impedances, with large deformations of contact boundary and with shock waves present in them is given. The main ideas underlying a numerical algorithm developed for solving such problems on the basis of the known CIP-CUP (Constrained Interpolation Profile Combined Unified Procedure) approach using Eulerian grids without explicit separation of contact interfaces, and governing equations of compressible fluid flow in terms of nonconservative variables are described. Robustness of the developed algorithm is demonstrated by the results of computation of some test problems having analytical solutions. The capabilities of the realized technique are illustrated by its application to the problems of impact of an axially-symmetric high-speed liquid jet on a rigid wall and on a thin liquid layer on a rigid wall. The obtained results are in satisfactory agreement with the known numerical solutions computed by the method of adaptively moving meshes with an explicit separation of the interphase boundary.
Keywords: multiphase compressible flows, large deformation of interface, Eulerian grid, interface capturing, CIP-CUP method.
@article{UZKU_2012_154_4_a6,
     author = {A. A. Aganin and T. S. Guseva},
     title = {Numerical simulation of contact interaction of compressible fluids on {Eulerian} grids},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {74--99},
     year = {2012},
     volume = {154},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - T. S. Guseva
TI  - Numerical simulation of contact interaction of compressible fluids on Eulerian grids
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 74
EP  - 99
VL  - 154
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/
LA  - ru
ID  - UZKU_2012_154_4_a6
ER  - 
%0 Journal Article
%A A. A. Aganin
%A T. S. Guseva
%T Numerical simulation of contact interaction of compressible fluids on Eulerian grids
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 74-99
%V 154
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/
%G ru
%F UZKU_2012_154_4_a6
A. A. Aganin; T. S. Guseva. Numerical simulation of contact interaction of compressible fluids on Eulerian grids. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 74-99. http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a6/

[1] Benson D. J., “Computational methods in Lagrangian and Eulerian hydrocodes”, Comput. Method. Appl. Mech. Engrg., 99:2–3 (1992), 235–394 | DOI | MR | Zbl

[2] Mair H. U., “Review: hydrocodes for structural response to underwater explosions”, Shock Vib., 6:2 (1999), 81–96 | DOI

[3] Allaire G., Clerc S., Kokh S., “A five-equation model for the simulation of interfaces between compressible fluids”, J. Comput. Phys., 181:2 (2002), 577–616 | DOI | MR | Zbl

[4] Burago N. G., Kukudzhanov V. N., “Obzor kontaktnykh algoritmov”, Izv. RAN. MTT, 2005, no. 1, 45–87

[5] Kadioglu S. Y., Sussman M., Osher S., Wright J. P., Kang M., “A second order primitive preconditioner for solving all speed multi-phase flows”, J. Comput. Phys., 209:2 (2005), 477–503 | DOI | MR | Zbl

[6] Garimella R., Dyadechko V., Swartz B., Shashkov M., “Interface reconstruction in multi-fluid, multi-phase flow simulations”, Proc. 14th Int. Meshing Roundtable, Springer, 2005, 19–32 | DOI

[7] Johnsen E., Colonius T., “Implementation of WENO schemes in compressible multicomponent flow problems”, J. Comput. Phys., 219:2 (2006), 715–732 | DOI | MR | Zbl

[8] Hu X. Y., Khoo B. C., Adams N. A., Huang F. L., “A conservative interface method for compressible flows”, J. Comput. Phys., 219:2 (2006), 553–578 | DOI | MR | Zbl

[9] Kim J., Lowengrub J., “Interfaces and multicomponent fluids”, Encyclopedia of Mathematical Physics, Elsevier, 2006, 135–144 | DOI

[10] Donghong W., Ning Z., Ou H., Jianming L., “A Ghost Fluid based Front Tracking Method for multimedium compressible flows”, Acta Math. Sci., 29:6 (2009), 1629–1646 | DOI | MR | Zbl

[11] So K. K., Hu X. Y., Adams N. A., “Anti-diffusion method for interface steepening in two-phase incompressible flow”, J. Comput. Phys., 230:13 (2011), 5155–5177 | DOI | MR | Zbl

[12] Chizhov A. V., Shmidt A. A., “Vysokoskorostnoi udar kapli o pregradu”, Zhurn. teoret. fiziki, 70:12 (2000), 18–27

[13] Golovachev Yu. P., Notkina E. A., Chizhov A. V., Shmidt A. A., “Raschet udarno-volnovykh techenii so svobodnymi poverkhnostyami”, Zhurn. vychisl. matem. i matem. fiziki, 41:1 (2001), 157–167 | MR | Zbl

[14] Godunov S. K., Zabrodin A. V. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR

[15] Unverdi S. O., Tryggvason G., “A front-tracking method for viscous, incompressible, multi-fluid flows”, J. Comput. Phys., 100:1 (1992), 25–37 | DOI | Zbl

[16] Cocchi J.-P., Saurel R., “A Riemann problem based method for the resolution of compressible multimaterial flows”, J. Comput. Phys., 137:2 (1997), 265–298 | DOI | MR | Zbl

[17] Glimm J., Grove J. W., Li X.-L., Shyue K.-M., Zhang Q., Zeng Y., “Three dimensional Front Tracking”, SIAM J. Sci. Comput., 19:3 (1998), 703–727 | DOI | MR | Zbl

[18] Glimm J., Grove J., Li X.-L., Tan D., “Robust computational algorithms for dynamic interface tracking in three dimensions”, SIAM J. Sci. Comput., 21:6 (2000), 2240–2256 | DOI | MR | Zbl

[19] Haller K. K., Ventikos Y., Poulikakos D., “Computational study of high-speed liquid droplet impact”, J. Appl. Phys., 95:2 (2002), 2821–2828 | DOI | MR

[20] Terashima H., Tryggvason G., “A front-tracking/ghost-fluid method for fluid interfaces in compressible flows”, J. Comput. Phys., 228:11 (2009), 4012–4037 | DOI | Zbl

[21] Harlow F., Amsden A., Fluid dynamics: a LASL monograph, Nat. Techn. Inform. Serv., Springfield, Virginia, 1971, 115 pp.

[22] Abgrall R., Karni S., “Computations of compressible multifluids”, J. Comput. Phys., 169:2 (2001), 594–623 | DOI | MR | Zbl

[23] Hirt C. W., Nichols B. D., “Volume of fluid (VOF) method for the dynamics of free boundaries”, J. Comput. Phys., 39:1 (1981), 201–225 | DOI | Zbl

[24] Wemmenhove R., Veldman A. E. P., Luppes R., Bunnik T., “Application of a VOF method to model compressible two-phase flow in sloshing tanks”, Proc. of OMAE2008, 2008, 603–612, Paper No OMAE2008-57254

[25] Petrov N. V., “Issledovanie lokalnogo energovydeleniya v vode vblizi svobodnoi poverkhnosti”, Nauch.-tekhn. vedom. SPbGPU, 2012, no. 1, 92–96

[26] Rider W. J., Kothe D., “Reconstructing volume tracking”, J. Comput. Phys., 141:2 (1998), 112–152 | DOI | MR | Zbl

[27] Renardy Y., Renardy M., “PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method”, J. Comput. Phys., 183:2 (2002), 400–421 | DOI | MR | Zbl

[28] Ubbink O., Issa R. I., “A method for capturing sharp fluid interfaces on arbitrary meshes”, J. Comput. Phys., 153:1 (1999), 26–50 | DOI | MR | Zbl

[29] Cassidy D. A., Edwards J. R., Tian M., “An investigation of interface-sharpening schemes for multi-phase mixture flows”, J. Comput. Phys., 228:16 (2009), 5628–5649 | DOI | MR | Zbl

[30] Osher S., Sethian J., “Front propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations”, J. Comput. Phys., 78:2 (1988), 12–49 | DOI | MR

[31] Sethian J. A., Smereka P., “Level Set Methods for fluid interfaces”, Annu. Rev. Fluid Mech., 35 (2003), 341–372 | DOI | MR | Zbl

[32] Karni S., “Multicomponent flow calculation by a consistent primitive algorithm”, J. Comput. Phys., 112:1 (1994), 31–43 | DOI | MR | Zbl

[33] Gaponenko Yu. A., “Chislennoe modelirovanie gazovoi kumulyatsii produktov vzryva pri detonatsii ploskikh parallelnykh zaryadov”, Vychisl. tekhnologii, 5:4 (2000), 31–39 | Zbl

[34] Abgrall R., “How to prevent pressure oscillations in multicomponent flow calculations: A quasi-conservative approach”, J. Comput. Phys., 125:1 (1996), 150–160 | DOI | MR | Zbl

[35] Anderson D. M., McFadden G. B., Wheeler A. A., “Diffuse-interface methods in fluid mechanics”, Ann. Rev. Fluid Mech., 30 (1998), 139–165 | DOI | MR

[36] Lowengrub J., Truskinovsky L., “Quasi-incompressible Cahn-Hilliard fluids and topological transitions”, Proc. Roy. Soc. Lond. A, 454 (1998), 2617–2654 | DOI | MR | Zbl

[37] Larrouturou B., “How to preserve the mass fraction positivity when computing compressible multi-component flows”, J. Comput. Phys., 95:1 (1990), 59–84 | DOI | MR

[38] Shyue K. M., “An efficient shock-capturing algorithm for compressible multicomponent problems”, J. Comput. Phys., 142:1 (1998), 208–242 | DOI | MR | Zbl

[39] Abgrall R., Saurel R., “Discrete equations for physical and numerical compressible multiphase mixtures”, J. Comput. Phys., 186:2 (2003), 361–396 | DOI | MR | Zbl

[40] Osterman A., Dular M., Sirok B., “Numerical simulation of a near-wall bubble collapse in an ultrasonic field”, J. Fluid Sci. Techn., 4:1 (2009), 210–221 | DOI

[41] Shyue K. M., “An anti-diffusion based Eulerian interface-sharpening algorithm for compressible two-phase flow with cavitation”, Proc. 8th Int. Symposium on Cavitation, Singapore, 2012, Abstr. No 198, svobodnyi URL: http://www.math.ntu.edu.tw/~shyue/mypapers/kmshyue_cav2012.pdf

[42] Ballil A., Jolgam S., Nowakowski A. F., Nicoleau F. C. G. A., “Numerical simulation of compressible two-phase flows using an Eulerian type reduced model”, Proc. World Congress on Engineering, WCE 2012, London, 2012, 1835–1840

[43] Yabe T., Xiao F., Utsumi T., “The constrained interpolation profile method for multiphase analysis”, J. Comput. Phys., 169:2 (2001), 556–593 | DOI | MR | Zbl

[44] Doihara R., Takahashi K., “Numerical calculation of laser-produced bubble near a solid boundary until the second collapse”, JSME. Int. J. Ser. B, 44:2 (2001), 238–246 | DOI

[45] Kawasaki K., “Numerical model of 2-D multiphase flow with solid-liquid-gas interaction”, Int. J. Offshore Polar Eng., 15:3 (2005), 198–203 | MR

[46] Kokh S., Allaire G., “Numerical simulation of 2D two-phase flows with interface”, Godunov Methods: Theory and Applications, 2001, 513–518 | DOI | MR | Zbl

[47] Xiao F., Honma Y., Kono T., “A simple algebraic interface capturing scheme using hyperbolic tangent function”, Int. J. Numer. Methods Fluids, 48:9 (2005), 1023–1040 | DOI | Zbl

[48] Sun Y., Beckermann C., “Sharp interface tracking using the phase-field equation”, J. Comput. Phys., 220:2 (2007), 626–653 | DOI | MR | Zbl

[49] Yabe T., Wang P. Y., “Unified numerical procedure for compressible and incompressible fluid”, J. Phys. Soc. Japan, 60:7 (1991), 2105–2108 | DOI | MR

[50] Fedkiw R., Liu X.-D., Osher S., “A general technique for eliminating spurious oscillations in conservative schemes for multiphase and multispecies Euler equations”, Int. J. Nonlinear Sci. Numer. Sim., 3:2 (2002), 99–106 | MR

[51] Karni S., “Hybrid multifluid algorithms”, SIAM J. Sci. Comput., 17:5 (1996), 1019–1039 | DOI | MR | Zbl

[52] Glimm J., Li X. L., Liu Y.-J., Xu Z.-L., Zhao N., “Conservative front tracking with improved accuracy”, SIAM J. Num. Analysis, 41:5 (2003), 1926–1947 | DOI | MR | Zbl

[53] Fedkiw R., Aslam T., Merriman B., Osher S., “A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Gluid Method)”, J. Comput. Phys., 152:2 (1999), 457–492 | DOI | MR | Zbl

[54] Fedkiw R., “Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method”, J. Comput. Phys., 175:1 (2002), 200–224 | DOI | Zbl

[55] Nourgaliev R. R., Dinh T. N., Theofanous T. G., “Direct numerical simulation of compressible multiphase flows: interaction of shock waves with dispersed multimaterial media”, Proc. 5th Int. Conf. Multiphase Flow, ICMF'04, Yokohama, Japan, 2004, Paper No 494, svobodnyi URL: http://www.crss.ucsb.edu/music/LEVEL0/ConferencesOpen/Conferences.2004/DNS-ICMF04.pdf

[56] Takahira H., Yuasa S., “Numerical simulations of shock-bubble interactions using an improved Ghost Fluid Method”, ASME 2005 Fluids Engineering Division Summer Meeting, FEDSM2005, 2005, No FEDSM 2005-77119, 777–785

[57] Nourgaliev R., Kadioglu S., Mousseau V., “Fully-implicit interface tracking for all-speed multifluid flows”, Computational Fluid Dynamics 2008, Springer, Berlin–Heidelberg, 2009, 551–557 | DOI

[58] Ogata Y., Yabe T., “Shock capturing with improved numerical viscosity in primitive Euler representation”, Comput. Phys. Commun., 119:2–3 (1999), 179–193 | DOI | Zbl

[59] Peng G., Ishizuka M., Hayama S., “An improved CIP-CUP method for submerged water jet flow simulation”, JSME Int. J. Ser. B, 44:4 (2001), 497–504 | DOI

[60] Ida M., “An improved numerical solver for the unified solution of compressible and incompressible fluids involving free surfaces. II. Multi-Time-Step integration and applications”, Comput. Phys. Commun., 150:3 (2003), 300–322 | DOI | MR | Zbl

[61] Nomura S., Nishida K., “Numerical simulation of a single bubble rising in an ultrasonic standing wave field”, Jpn. J. Appl. Phys., 42 (2003), 2975–2980 | DOI

[62] Tong M., Browne D. J., “Modelling compressible gas flow near the nozzle of a gas atomiser using a new unified model”, Computers and Fluids, 38:6 (2009), 1183–1190 | DOI | Zbl

[63] Tanaka N., Maseguchi R., Ogawara T., “Improvement of conservative property and interface resolution of mesh-based two-phase flow simulation algorithms for splashing fluid behavior”, Nuc. Eng. Design, 240:12 (2010), 3984–3990 | DOI

[64] Lee S.-J., Cho B.-G., Lee I., “Two-dimensional unsteady aerodynamics analysis based on a multiphase perspective”, Comput. Fluids, 53 (2012), 105–116 | DOI | MR | Zbl

[65] Xiao F., “A class of single-cell high-order semi-Lagrangian advection schemes”, Month. Weath. Rev., 128:4 (2000), 1165–1176 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[66] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow with free surface”, Phys. Fluids, 8 (1965), 2182–2189 | DOI | Zbl

[67] Amsden A. A., Harlow F. H., “A simplified MAC technique for incompressible fluid flow calculations”, J. Comput. Phys., 6:2 (1970), 322–325 | DOI | MR | Zbl

[68] Patankar S. V., Spalding D. B., “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows”, J. Heat Mass Transfer, 15 (1972), 1787–1806 | DOI | Zbl

[69] Harlow F. H., Amsden A. A., “Numerical simulation of almost incompressible flow”, J. Comput. Phys., 3:1 (1968), 80–93 | DOI | Zbl

[70] Issa R. I., “Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., 62:1 (1986), 40–65 | DOI | MR | Zbl

[71] Yoon S. Y., Yabe T., “The unified simulation for incompressible and compressible flow by the predictor-corrector scheme based on the CIP method”, Comput. Phys. Commun., 119:2–3 (1999), 149–158 | DOI | Zbl

[72] Yabe T., Ishikawa T., Wang P. Y., Aoki T., Kadota Y., Ikeda F., “A universal solver for hyperbolic equations by cubic-polynomial interpolation. II. Two- and three-dimensional solvers”, Comput. Phys. Commun., 66:2–3 (1991), 233–242 | DOI | MR | Zbl

[73] Zalesak S. T., “Fully multidimensional flux-corrected transport algorithms for fluids”, J. Comput. Phys., 31:3 (1979), 335–362 | DOI | MR | Zbl

[74] Yabe T., Xiao F., “Description of complex and sharp interface with fixed grids in incompressible and compressible fluid”, Comput. Math. Appl., 29:1 (1995), 15–25 | DOI | MR | Zbl

[75] Blake J. R., Gibson D. C., “Cavitation bubbles near boundaries”, Annu. Rev. Fluid Mech., 19 (1987), 99–123 | DOI

[76] Aganin A. A., Khalitova T. F., Khismatullina N. A., “Metod chislennogo resheniya zadach silnogo szhatiya nesfericheskogo kavitatsionnogo puzyrka”, Vychisl. tekhnologii, 15:1 (2010), 14–32 | Zbl

[77] Aganin A. A., Ilgamov M. A., Khalitova T. F., “Udarnoe vozdeistvie strui na zhestkuyu stenku”, Aktualnye problemy mekhaniki sploshnoi sredy, K 20-letiyu IMM KazNTs RAN, v. 1, Foliant, Kazan, 2011, 134–146

[78] Benjamin T. B., Ellis A. T., “The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries”, Phil. Trans. R. Soc. Lond., 260:1110 (1966), 221–240 | DOI

[79] Crum L. A., “Surface oscillations and jet development in pulsating bubbles”, J. de Physique, 40:8 (1979), C8-285–C8-288

[80] Ohl C.-D., Kurz T., Geisler R., Lindau O., Lauterborn W., “Bubble dynamics, shock waves and sonoluminescence”, Phil. Trans. R. Soc. Lond., 357:1751 (1999), 269–294 | DOI | MR | Zbl

[81] Philipp A., Lauterborn W., “Cavitation erosion by single laser-produced bubbles”, J. Fluid Mech., 361 (1998), 75–116 | DOI | Zbl

[82] Aganin A. A., Ilgamov M. A., Malakhov V. G., Khalitova T. F., Khismatullina N. A., “Udarnoe vozdeistvie kavitatsionnogo puzyrka na uprugoe telo”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 153, no. 1, 2011, 131–146 | MR