A two-grid method for an elliptic equation with boundary layers on a Shishkin mesh
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 49-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this article, we consider a linear elliptic equation with regular and parabolic boundary layers. To solve this equation, we used an upwind difference scheme on a Shishkin mesh, possessing the property of the uniform convergence with respect to a small parameter. We investigated the problem of decreasing the required number of arithmetic operations for implementation of the difference scheme on the basis of a two-grid method, and studied the Richardson method aimed at improving the accuracy of this scheme. Here, we present results of some numerical experiments.
Mots-clés : elliptic equation, singular perturbation
Keywords: Shishkin mesh, difference scheme, iterative method, two-grid method, Richardson extrapolation.
@article{UZKU_2012_154_4_a4,
     author = {S. V. Tikhovskaya},
     title = {A two-grid method for an elliptic equation with boundary layers on {a~Shishkin} mesh},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {49--56},
     year = {2012},
     volume = {154},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a4/}
}
TY  - JOUR
AU  - S. V. Tikhovskaya
TI  - A two-grid method for an elliptic equation with boundary layers on a Shishkin mesh
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 49
EP  - 56
VL  - 154
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a4/
LA  - ru
ID  - UZKU_2012_154_4_a4
ER  - 
%0 Journal Article
%A S. V. Tikhovskaya
%T A two-grid method for an elliptic equation with boundary layers on a Shishkin mesh
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 49-56
%V 154
%N 4
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a4/
%G ru
%F UZKU_2012_154_4_a4
S. V. Tikhovskaya. A two-grid method for an elliptic equation with boundary layers on a Shishkin mesh. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 4, pp. 49-56. http://geodesic.mathdoc.fr/item/UZKU_2012_154_4_a4/

[1] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996, 163 pp. | MR

[2] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992, 232 pp.

[3] Shishkin G. I., Shishkina L. P., Difference Methods for Singular Perturbation Problems, Chapman Hall/CRC, Boca Raton, 2009, 408 pp. | MR | Zbl

[4] Roos H. G., Stynes M., Tobiska L., Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer-Verlag, Berlin, 2008, 604 pp. | MR | Zbl

[5] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984, 320 pp. | MR | Zbl

[6] Ilin V. P., Metody konechnykh raznostei i konechnykh ob'emov dlya ellipticheskikh uravnenii, Izd-vo IVMiMG, Novosibirsk, 2001, 318 pp. | Zbl

[7] Shishkin G. I., Shishkina L. P., “A Higher-Order Richardson Method for a Quasilinear Singularly Perturbed Elliptic Reaction-Diffusion Equation”, Differ. Equat., 41:7 (2005), 1030–1039 | DOI | MR | Zbl

[8] Zadorin A. I., Zadorin N. A., “Interpolyatsiya funktsii s pogransloinymi sostavlyayuschimi i ee primenenie v dvukhsetochnom metode”, Sib. elektr. matem. izv., 8 (2011), 247–267 | MR