Parallel Algorithms for Constructing and Solving the Schur Complement on Graphics Accelerators
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 202-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper deals with a parallel algorithm for computing the Schur complement on multiple GPU. The implementation of a parallel subdomain is shown at the stage of constructing the Schur complement matrices. An algorithm for matrix inversion is presented by the solution of the matrix system for multiple parallel streams. The realization of the matrix-vector product by means of the matrix decomposition algorithm is described for a parallel conjugate gradient method proposed for the interface system solution.
Keywords: Schur complement, parallel computing, preconditioned conjugate gradient method, graphics accelerators.
@article{UZKU_2012_154_3_a18,
     author = {S. P. Kopysov and I. M. Kuzmin and N. S. Nedozhogin and A. K. Novikov},
     title = {Parallel {Algorithms} for {Constructing} and {Solving} the {Schur} {Complement} on {Graphics} {Accelerators}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {202--215},
     year = {2012},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a18/}
}
TY  - JOUR
AU  - S. P. Kopysov
AU  - I. M. Kuzmin
AU  - N. S. Nedozhogin
AU  - A. K. Novikov
TI  - Parallel Algorithms for Constructing and Solving the Schur Complement on Graphics Accelerators
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 202
EP  - 215
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a18/
LA  - ru
ID  - UZKU_2012_154_3_a18
ER  - 
%0 Journal Article
%A S. P. Kopysov
%A I. M. Kuzmin
%A N. S. Nedozhogin
%A A. K. Novikov
%T Parallel Algorithms for Constructing and Solving the Schur Complement on Graphics Accelerators
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 202-215
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a18/
%G ru
%F UZKU_2012_154_3_a18
S. P. Kopysov; I. M. Kuzmin; N. S. Nedozhogin; A. K. Novikov. Parallel Algorithms for Constructing and Solving the Schur Complement on Graphics Accelerators. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 202-215. http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a18/

[1] Haynsworth E. V., “On the Schur Complement”, Basel Math. Notes, 1968, no. 20, 17 pp.

[2] Przemieniecki J. S., Theory of Matrix Structural Analysis, McGaw-Hill, N. Y., 1968, 480 pp. | Zbl

[3] Postnov V. A., Metod superelementov v raschetakh inzhenernykh sooruzhenii, Sudostroenie, L., 1979, 288 pp.

[4] Faddeev D. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Fizmatgiz, M., 1960, 656 pp. | MR

[5] Giraud L., Haidar A., Saad Y., “Sparse approximations of the Schur complement for parallel algebraic hybrid solvers in 3D”, Numer. Math., 3 (2010), 276–294 | MR | Zbl

[6] Rajamanickam S., Boman E. G., Heroux M. A., “ShyLU: A Hybrid-Hybrid Solver for Multicore Platforms”, IEEE 26th Int. Parallel and Distributed Processing Symposium (IPDPS) (21–25 May 2012), 631–643

[7] Korneev V. G., Ensen S., “Effektivnoe predobuslavlivanie metodom dekompozitsii oblasti dlya $p$-versii c ierarkhicheskim bazisom”, Izv. vuzov. Matem., 1999, no. 5, 37–56 | MR | Zbl

[8] Kopysov S. P., Krasnoperov I. V., Rychkov V. N., “Ob'ektno-orientirovannyi metod dekompozitsii oblasti”, Vychislitelnye metody i programmirovanie, 4:1 (2003), 176–193

[9] Kopysov S. P., Krasnopyorov I. V., Novikov A. K., Rychkov V. N., “Parallel Distributed Object-Oriented Framework for Domain Decomposition”, Domain Decomposition Methods in Science and Engineering, 40, Springer, 2005, 605–614 | DOI | MR

[10] Kopysov C. P., “Optimalnoe razdelenie oblasti dlya parallelnogo metoda podstruktur”, Setochnye metody dlya resheniya kraevykh zadach i prilozheniya, Materialy Pyatogo Vseros. seminara, Izd-vo Kazan. un-ta, Kazan, 2004, 121–124

[11] Kopysov S. P., Novikov A. K., Sagdeeva Yu. A., “Reshenie sistem uravnenii metoda Galërkina s razryvnymi bazisnymi funktsiyami na graficheskom uskoritele”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2011, no. 3, 137–147

[12] Karypis G., Kumar V., “Parallel multilevel k-way partitioning scheme for irregular graphs”, SIAM Rev., 41:2 (1999), 278–300 | DOI | MR | Zbl