Hardy Inequality with a Singular Weight inside a Domain
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 173-179
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider Sobolev spaces with singular weights at some internal points of a 2D-domain. For the functions of these spaces, Hardy inequality is proved. Embedding theorems for weighted Sobolev spaces and theorems on equivalent renorming are obtained.
Keywords:
Hardy inequality, weighted Sobolev spaces, embedding theorems, equivalent renorming theorems.
@article{UZKU_2012_154_3_a15,
author = {M. R. Timerbaev and N. V. Timerbaeva},
title = {Hardy {Inequality} with {a~Singular} {Weight} inside {a~Domain}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {173--179},
year = {2012},
volume = {154},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a15/}
}
TY - JOUR AU - M. R. Timerbaev AU - N. V. Timerbaeva TI - Hardy Inequality with a Singular Weight inside a Domain JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2012 SP - 173 EP - 179 VL - 154 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a15/ LA - ru ID - UZKU_2012_154_3_a15 ER -
%0 Journal Article %A M. R. Timerbaev %A N. V. Timerbaeva %T Hardy Inequality with a Singular Weight inside a Domain %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2012 %P 173-179 %V 154 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a15/ %G ru %F UZKU_2012_154_3_a15
M. R. Timerbaev; N. V. Timerbaeva. Hardy Inequality with a Singular Weight inside a Domain. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 173-179. http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a15/
[1] Khardi G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948, 456 pp.
[2] Sobolev S. L., Izbrannye voprosy teorii funktsionalnykh prostranstv i obobschennykh funktsii, Nauka, M., 1989, 254 pp.
[3] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977, 456 pp.
[4] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp. | MR
[5] Timerbaev M. R., “Prostranstva s normoi grafika i usilennye prostranstva Soboleva, I”, Izv. vuzov. Matem., 2003, no. 5, 55–65