Matrix Eigenvalues in Analytic Perturbation Theory for Linear Operators
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 158-172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper, we propose a new approach to the analytic perturbation theory for isolated eigenvalues of finite multiplicity. This approach is based on the notion of the matrix eigenvalue of a linear operator. As an application example, we consider linear problems for differential equations.
Keywords: linear operator, analytic perturbation theory.
Mots-clés : matrix eigenvalue
@article{UZKU_2012_154_3_a14,
     author = {V. S. Mokeichev and A. M. Sidorov},
     title = {Matrix {Eigenvalues} in {Analytic} {Perturbation} {Theory} for {Linear} {Operators}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {158--172},
     year = {2012},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a14/}
}
TY  - JOUR
AU  - V. S. Mokeichev
AU  - A. M. Sidorov
TI  - Matrix Eigenvalues in Analytic Perturbation Theory for Linear Operators
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 158
EP  - 172
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a14/
LA  - ru
ID  - UZKU_2012_154_3_a14
ER  - 
%0 Journal Article
%A V. S. Mokeichev
%A A. M. Sidorov
%T Matrix Eigenvalues in Analytic Perturbation Theory for Linear Operators
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 158-172
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a14/
%G ru
%F UZKU_2012_154_3_a14
V. S. Mokeichev; A. M. Sidorov. Matrix Eigenvalues in Analytic Perturbation Theory for Linear Operators. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 158-172. http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a14/

[1] Schrödinger E., “Quantisierung als Eigenwertproblem. Dritte Mitteilung: Störungstheorie, mit Anwendung auf den Starkeffekt der Balmerlinien”, Ann. Phys., 80 (1926), 437–490 | DOI | Zbl

[2] Rellich F., “Störungstheorie der Spektralzerlegung. I: Mitteilung. Analytische Störung der isolierten Punkteigenwerte eines beschränkten Operators”, Math. Ann., 113 (1937), 600–619 | DOI | MR

[3] Mokeichev V. S., “Sobstvennye znacheniya granichnykh zadach. Preobrazovanie granichnykh zadach k granichnym zadacham s malymi koeffitsientami”, Differents. uravneniya, 25:2 (1989), 222–228 | MR

[4] Mokeichev V. S., Sidorov A. M., “O matrichnom podkhode k teorii vozmuschenii lineinykh operatorov”, Sovremennye metody teorii funktsii i smezhnye problemy, Materialy konf. Voronezh. zimnei matem. shkoly, Izd.-poligraf. tsentr Voronezh. un-ta, Voronezh, 2009, 119–120

[5] Sidorov A. M., “Matrichnye sobstvennye znacheniya v teorii vozmuschenii”, Sovremennye problemy teorii funktsii i ikh prilozhenii, Materialy 16-i Sarat. zimnei shkoly, Nauchn. shk., Saratov, 2012, 161–162

[6] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Uchen. zap. Mosk. gos. un-ta, 4:148 (1951), 69–107 | MR

[7] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp.