Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 145-157
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of $\mathbb R$-linear conjugation for parallel-layered $(n+1)$-phase media is solved in the class of piecewise meromorphic functions with given principal parts. The solution is written as a left-sided Fourier integral with a known original. In addition, some sufficient conditions under which the Fourier integral can be represented as an absolutely convergent series are obtained.
Keywords:
parallel-layered media, $\mathbb R$-linear conjugation problem, heterogeneous structures, Milne-Thomson theorem, piecewise meromorphic functions.
@article{UZKU_2012_154_3_a13,
author = {A. Yu. Kazarin},
title = {Solution of a $\mathbb R${-Linear} {Conjugation} {Problem} for a {Parallel-Layered} {Medium} in the {Class} of {Piecewise} {Meromorphic} {Functions}},
journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
pages = {145--157},
year = {2012},
volume = {154},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/}
}
TY - JOUR AU - A. Yu. Kazarin TI - Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2012 SP - 145 EP - 157 VL - 154 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/ LA - ru ID - UZKU_2012_154_3_a13 ER -
%0 Journal Article %A A. Yu. Kazarin %T Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2012 %P 145-157 %V 154 %N 3 %U http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/ %G ru %F UZKU_2012_154_3_a13
A. Yu. Kazarin. Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 145-157. http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/
[1] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964, 655 pp.
[2] Obnosov Yu. V., Egorova M. A., “Zadacha R-lineinogo sopryazheniya dlya sofokusnogo parabolicheskogo koltsa”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 151:3 (2009), 170–178 | Zbl
[3] Obnosov Yu. V., Kraevye zadachi teorii geterogennykh sred. Mnogofaznye sredy, razdelennye krivymi vtorogo poryadka, Izd-vo Kazan. un-ta, Kazan, 2009, 205 pp.
[4] Emets Yu. P., Kraevye zadachi elektrodinamiki anizotropno provodyaschikh sred, Naukova dumka, Kiev, 1987, 254 pp.
[5] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp.
[6] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp.