Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 145-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of $\mathbb R$-linear conjugation for parallel-layered $(n+1)$-phase media is solved in the class of piecewise meromorphic functions with given principal parts. The solution is written as a left-sided Fourier integral with a known original. In addition, some sufficient conditions under which the Fourier integral can be represented as an absolutely convergent series are obtained.
Keywords: parallel-layered media, $\mathbb R$-linear conjugation problem, heterogeneous structures, Milne-Thomson theorem, piecewise meromorphic functions.
@article{UZKU_2012_154_3_a13,
     author = {A. Yu. Kazarin},
     title = {Solution of a $\mathbb R${-Linear} {Conjugation} {Problem} for a {Parallel-Layered} {Medium} in the {Class} of {Piecewise} {Meromorphic} {Functions}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {145--157},
     year = {2012},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/}
}
TY  - JOUR
AU  - A. Yu. Kazarin
TI  - Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 145
EP  - 157
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/
LA  - ru
ID  - UZKU_2012_154_3_a13
ER  - 
%0 Journal Article
%A A. Yu. Kazarin
%T Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 145-157
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/
%G ru
%F UZKU_2012_154_3_a13
A. Yu. Kazarin. Solution of a $\mathbb R$-Linear Conjugation Problem for a Parallel-Layered Medium in the Class of Piecewise Meromorphic Functions. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 145-157. http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a13/

[1] Miln-Tomson L. M., Teoreticheskaya gidrodinamika, Mir, M., 1964, 655 pp.

[2] Obnosov Yu. V., Egorova M. A., “Zadacha R-lineinogo sopryazheniya dlya sofokusnogo parabolicheskogo koltsa”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 151:3 (2009), 170–178 | Zbl

[3] Obnosov Yu. V., Kraevye zadachi teorii geterogennykh sred. Mnogofaznye sredy, razdelennye krivymi vtorogo poryadka, Izd-vo Kazan. un-ta, Kazan, 2009, 205 pp.

[4] Emets Yu. P., Kraevye zadachi elektrodinamiki anizotropno provodyaschikh sred, Naukova dumka, Kiev, 1987, 254 pp.

[5] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978, 296 pp.

[6] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp.