Numerical Solution of an Optimal Control Problem Governed by a Linear Elliptic Equation with Non-Local State Constraints
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 129-144 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An elliptic optimal control problem with distributed control, pointwise control constraints and non-local state constraints has been considered. A mesh approximation of the problem has been constructed. The existence and uniqueness of the approximate solution have been established, and the convergence of the approximate solution to the exact one has been proved. The convergence of the two classes of iterative methods of solving the constructed mesh optimal control problem has been studied. The results of the numerical experiments have been compared. The dependence of the convergence rate upon the mesh size and the regularization parameter in the objective functional has been analyzed.
Keywords: linear elliptic equation, optimal control, finite difference approximation, iterative method.
@article{UZKU_2012_154_3_a12,
     author = {D. G. Zalyalov and A. V. Lapin},
     title = {Numerical {Solution} of an {Optimal} {Control} {Problem} {Governed} by a {Linear} {Elliptic} {Equation} with {Non-Local} {State} {Constraints}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {129--144},
     year = {2012},
     volume = {154},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a12/}
}
TY  - JOUR
AU  - D. G. Zalyalov
AU  - A. V. Lapin
TI  - Numerical Solution of an Optimal Control Problem Governed by a Linear Elliptic Equation with Non-Local State Constraints
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 129
EP  - 144
VL  - 154
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a12/
LA  - ru
ID  - UZKU_2012_154_3_a12
ER  - 
%0 Journal Article
%A D. G. Zalyalov
%A A. V. Lapin
%T Numerical Solution of an Optimal Control Problem Governed by a Linear Elliptic Equation with Non-Local State Constraints
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 129-144
%V 154
%N 3
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a12/
%G ru
%F UZKU_2012_154_3_a12
D. G. Zalyalov; A. V. Lapin. Numerical Solution of an Optimal Control Problem Governed by a Linear Elliptic Equation with Non-Local State Constraints. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 129-144. http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a12/

[1] Bergounioux M., Haddou V., Hintermuller M., Kunisch K., “A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems”, SIAM J. Optim., 11:2 (2000), 495–521 | DOI | MR | Zbl

[2] Bergounioux M., Kunisch K., “Primal-dual active set strategy for state-constrained optimal control problems”, Comput. Optim. Appl., 22:2 (2002), 193–224 | DOI | MR | Zbl

[3] Troltzsch F., Pufert U., Weiser M., “The convergence of an interior point method for an elliptic control problem with mixed control-state constraints”, Comput. Optim. Appl., 39:2 (2008), 183–218 | DOI | MR | Zbl

[4] Troltzsch F., Yousept I., “A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints”, Comput. Optim. Appl., 42:1 (2009), 43–66 | DOI | MR | Zbl

[5] Hintermuller M., Hinze M., “Moreau-Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment”, SIAM J. Numer. Anal., 47:3 (2009), 1666–1683 | DOI | MR | Zbl

[6] Graser C., Kornhuber R., “Nonsmooth Newton methods for set-valued saddle point problems”, SIAM J. Numer. Anal., 47:2 (2009), 1251–1273 | DOI | MR | Zbl

[7] Hinze M., Schiela A., “Discretization of interior point methods for state constrained elliptic optimal control problems: Optimal error estimates and parameter adjustment”, Comput. Optim. Appl., 48:3 (2011), 581–600 | DOI | MR | Zbl

[8] Gill F., Myurrei U., Rait M., Prakticheskaya optimizatsiya, Mir, M., 1985, 509 pp.

[9] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987, 400 pp.

[10] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 549 pp.

[11] Biegler L. T., Ghattas O., Heinkenschloss M., van Bloemen Waanders B. (eds.), Large-scale PDE-constrained optimization, Springer-Verlag, Berlin, 2003, 350 pp. | MR

[12] Laitinen E., Lapin A., Lapin S., “On the iterative solution of finite-dimensional inclusions with applications to optimal control problems”, Comp. Methods Appl. Math., 10:3 (2010), 283–301 | MR | Zbl

[13] Lapin A., “Preconditioned Uzawa type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl

[14] Lapin A. V., Khasanov M. G., “Reshenie zadachi optimalnogo upravleniya pravoi chastyu ellipticheskogo uravneniya pri nalichii ogranichenii na sostoyanie”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 152:4 (2010), 56–67 | MR | Zbl

[15] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 391 pp.

[16] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979, 399 pp.