On the Partial Sums of the Fourier Series of Functions of Bounded Variation
    
    
  
  
  
      
      
      
        
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 121-128
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice du chapitre de livre provenant de la source Math-Net.Ru
            
              S. Banach [Sur la divergence des séries orthogonales. Studia Math., 1940, vol. 9, pp. 139–155] proved that for any function $f(x)\in L_2(I)$ $(I=[0,1]$, $f(x)\not\sim 0)$ there exists an orthonormal system (ONS) $(\varphi_n(x))$ such that $\varlimsup\limits_{n\to \infty} |S_n(f,x)|=+\infty$ almost everywhere on $I$, where $S_n(f,x)$ are the partial sums of the Fourier series of a function $f(x)$ with respect to the system $(\varphi_n(x))=\Phi$. This paper finds necessary and sufficient conditions which should be satisfied by ONS so that the partial sums of the Fourier series of functions with finite variation be uniformly bounded on $I$.
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
bounded variation, partial sums, subsystem.
                    
                  
                
                
                @article{UZKU_2012_154_3_a11,
     author = {L. D. Gogoladze and V. Sh. Tsagareishvili},
     title = {On the {Partial} {Sums} of the {Fourier} {Series} of {Functions} {of~Bounded} {Variation}},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {154},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a11/}
}
                      
                      
                    TY - JOUR AU - L. D. Gogoladze AU - V. Sh. Tsagareishvili TI - On the Partial Sums of the Fourier Series of Functions of Bounded Variation JO - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki PY - 2012 SP - 121 EP - 128 VL - 154 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a11/ LA - ru ID - UZKU_2012_154_3_a11 ER -
%0 Journal Article %A L. D. Gogoladze %A V. Sh. Tsagareishvili %T On the Partial Sums of the Fourier Series of Functions of Bounded Variation %J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki %D 2012 %P 121-128 %V 154 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a11/ %G ru %F UZKU_2012_154_3_a11
L. D. Gogoladze; V. Sh. Tsagareishvili. On the Partial Sums of the Fourier Series of Functions of Bounded Variation. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 3, pp. 121-128. http://geodesic.mathdoc.fr/item/UZKU_2012_154_3_a11/
