On completely regular graphs with $k=11, $ $\lambda=4$
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 83-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

It is well known that if $\Gamma$ is a connected edge-regular graph with $b_1=1$, then $\Gamma$ is a polygon or a complete multipartite graph $K_{n\times2}$. A. A. Makhnev and his students have studied completely regular graphs with $2\le b_1\le5$. In our earlier article, the study of completely regular graphs with $b_1=6$ was reduced to the investigation of graphs with $k\in\{10,11,12\}$. Together with M. S. Nirova, we considered the case $b_1=6$, $k=10$. This paper deals with completely regular graphs with $b_1=6$ and $k=11$.
Keywords: graph, completely regular graph.
@article{UZKU_2012_154_2_a7,
     author = {K. S. Efimov and A. A. Makhnev},
     title = {On completely regular graphs with $k=11, $ $\lambda=4$},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {83--92},
     year = {2012},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a7/}
}
TY  - JOUR
AU  - K. S. Efimov
AU  - A. A. Makhnev
TI  - On completely regular graphs with $k=11, $ $\lambda=4$
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 83
EP  - 92
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a7/
LA  - ru
ID  - UZKU_2012_154_2_a7
ER  - 
%0 Journal Article
%A K. S. Efimov
%A A. A. Makhnev
%T On completely regular graphs with $k=11, $ $\lambda=4$
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 83-92
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a7/
%G ru
%F UZKU_2012_154_2_a7
K. S. Efimov; A. A. Makhnev. On completely regular graphs with $k=11, $ $\lambda=4$. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 83-92. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a7/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Springer-Verlag, Berlin, 1989, 495 pp. | MR | Zbl

[2] Makhnev A. A., “O silnoi regulyarnosti nekotorykh reberno regulyarnykh grafov”, Izv. RAN. Seriya matem., 68:1 (2004), 159–182 | DOI | MR | Zbl

[3] Vasilev S. A., Makhnev A. A., “O vpolne regulyarnykh grafakh s $b_1=4$”, Izv. Gomel. gos. un-ta, 2006, no. 4(37), 101–108

[4] Kazarina V. I., Makhnev A. A., “O reberno regulyarnykh grafakh s $b_1=5$”, Vladikavkaz. matem. zhurnal, 11:1 (2009), 29–42 | MR

[5] Efimov K. S., Makhnev A. A., “Vpolne regulyarnye grafy s $b_1=6$”, Zhurn. Sib. fed. un-ta, 2:1 (2009), 63–77

[6] Efimov K. S., Makhnev A. A., Nirova M. S., “O vpolne regulyarnykh grafakh s $k=10$, $\lambda=3$”, Trudy In-ta matem. i mekhaniki UrO RAN, 16, no. 2, 2010, 75–90

[7] Makhnev A. A., “O rasshireniyakh chastichnykh geometrii, soderzhaschikh malye $\mu$-podgrafy”, Diskr. analiz i issled. operatsii, 3:3 (1996), 71–83 | MR | Zbl