Cauchy's integral theorem and classical reciprocity law
Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 73-82 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The present paper gives explicit formulas for the local norm residue symbol and the product of power residue symbols. Using these formulas, a visible analogy can be made between the reciprocity law in the field of algebraic numbers and Cauchy's integral theorem from complex analysis.
Keywords: reciprocity law, Schnirelman integral.
Mots-clés : norm residue symbol
@article{UZKU_2012_154_2_a6,
     author = {S. V. Vostokov and M. A. Ivanov},
     title = {Cauchy's integral theorem and classical reciprocity law},
     journal = {U\v{c}\"enye zapiski Kazanskogo universiteta. Seri\^a Fiziko-matemati\v{c}eskie nauki},
     pages = {73--82},
     year = {2012},
     volume = {154},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a6/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - M. A. Ivanov
TI  - Cauchy's integral theorem and classical reciprocity law
JO  - Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
PY  - 2012
SP  - 73
EP  - 82
VL  - 154
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a6/
LA  - ru
ID  - UZKU_2012_154_2_a6
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A M. A. Ivanov
%T Cauchy's integral theorem and classical reciprocity law
%J Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki
%D 2012
%P 73-82
%V 154
%N 2
%U http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a6/
%G ru
%F UZKU_2012_154_2_a6
S. V. Vostokov; M. A. Ivanov. Cauchy's integral theorem and classical reciprocity law. Učënye zapiski Kazanskogo universiteta. Seriâ Fiziko-matematičeskie nauki, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, Tome 154 (2012) no. 2, pp. 73-82. http://geodesic.mathdoc.fr/item/UZKU_2012_154_2_a6/

[1] Parshin A. N., Put. Matematika i drugie miry, Dobrosvet, M., 2002, 240 pp.

[2] Hilbert D., Gesammelte Abhandlungen, v. 1, Springer, Berlin, 1932, 558 pp.

[3] Shafarevich I. R., “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | MR | Zbl

[4] Hasse H., “Die Normenresttheorie relativ-abelscher Zahlenkörper als Klassenkörpertheorie im Kleinen”, J. Reine Angew. Math., 162 (1930), 145–154 | Zbl

[5] Ivanov M. A., “Proizvedenie simvolov $p^n$ stepennykh vychetov kak abelev integral”, Algebra i analiz, 24:2 (2012), 120–129 | MR

[6] Vostokov S. V., “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR. Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[7] Kneser M., “Zum expliziten Reziprozitätsgesetz von I. R. Šafarevič”, Math. Nachr., 6 (1951), 89–96 | DOI | MR | Zbl